A. Implementation Details

Unsupervised pre-training. Our implementation follows
the practice of existing works [36, 17, 8,9, 15].

Data augmentation. We describe data augmentation
using the PyTorch [31] notations. Geometric augmen-
tation is RandomResizedCrop with scale in [0.2,1.0]
[36] and RandomHorizontalFlip. Color augmenta-
tion is ColorJitter with {brightness, contrast, satura-
tion, hue} strength of {0.4, 0.4, 0.4, 0.1} with an applying
probability of 0.8, and RandomGrayscale with an ap-
plying probability of 0.2. Blurring augmentation [8] has a
Gaussian kernel with std in [0.1, 2.0].

Initialization. The convolution and fc layers follow the
default PyTorch initializers. Note that by default PyTorch
initializes fc layers’ weight and bias by a uniform distribu-
tion U(—Vk, vVk) where k=—2L_—. Models with sub-
stantially different fc initializers (e.g., a fixed std of 0.01)
may not converge. Moreover, similar to the implementation
of [8], we initialize the scale parameters as O [14] in the last
BN layer for every residual block.

Weight decay. We use a weight decay of 0.0001 for all
parameter layers, including the BN scales and biases, in the
SGD optimizer. This is in contrast to the implementation
of [8, 15] that excludes BN scales and biases from weight
decay in their LARS optimizer.

Linear evaluation. Given the pre-trained network, we
train a supervised linear classifier on frozen features, which
are from ResNet’s global average pooling layer (pools).
The linear classifier training uses base [r = 0.02 with a
cosine decay schedule for 90 epochs, weight decay = 0,
momentum= 0.9, batch size=4096 with a LARS optimizer
[38]. We have also tried the SGD optimizer following [17]
with base lr = 30.0, weight decay = 0, momentum = 0.9,
and batch size= 256, which gives ~1% lower accuracy. Af-
ter training the linear classifier, we evaluate it on the center
224 %224 crop in the validation set.

B. Additional Ablations on ImageNet

The following table reports the SimSiam results vs. the
output dimension d:

outputd | 256 512 1024 2048
acc. (%) | 653 672 675  68.1

It benefits from a larger d and gets saturated at d = 2048.
This is unlike existing methods [36, 17, 8, 15] whose accu-
racy is saturated when d is 256 or 512.

In this table, the prediction MLP’s hidden layer dimen-
sion is always 1/4 of the output dimension. We find that this
bottleneck structure is more robust. If we set the hidden
dimension to be equal to the output dimension, the train-
ing can be less stable or fail in some variants of our explo-
ration. We hypothesize that this bottleneck structure, which

SimCLR MoCo v2 BYOL SwWwAV
epoch ‘ 200 800 1000 ‘ 200 800 ‘ 300 800 1000 ‘ 400
origin | 66.6 683 69.3 | 67.5 71.1|72.5 - 743 | 70.1
repro. | 68.3 70.4 - ‘ 69.9 722 ‘ 724 743 - ‘ 70.7

Table C.1. Our reproduction vs. original papers’ results. All
are based on ResNet-50 pre-trained with two 224 X224 crops.

behaves like an auto-encoder, can force the predictor to di-
gest the information. We recommend to use this bottleneck
structure for our method.

C. Reproducing Related Methods

Our comparison in Table 4 is based on our reproduction
of the related methods. We re-implement the related meth-
ods as faithfully as possible following each individual paper.
In addition, we are able to improve SimCLR, MoCo v2, and
SwAV by small and straightforward modifications: specif-
ically, we use 3 layers in the projection MLP in SimCLR
and SWAV (vs. originally 2), and use symmetrized loss for
MoCo v2 (vs. originally asymmetric). Table C.1 compares
our reproduction of these methods with the original papers’
results (if available). Our reproduction has better results for
SimCLR, MoCo v2, and SWAV (denoted as “+” in Table 4),
and has at least comparable results for BYOL.

D. CIFAR Experiments

We have observed similar behaviors of SimSiam in the
CIFAR-10 dataset [24]. The implementation is similar to
that in ImageNet. We use SGD with base I = 0.03 and
a cosine decay schedule for 800 epochs, weight decay =
0.0005, momentum = 0.9, and batch size = 512. The input
image size is 32x32. We do not use blur augmentation. The
backbone is the CIFAR variant of ResNet-18 [19], followed
by a 2-layer projection MLP. The outputs are 2048-d.

Figure D.1 shows the kNN classification accuracy (left)
and the linear evaluation (right). Similar to the ImageNet
observations, SimSiam achieves a reasonable result and
does not collapse. We compare with SimCLR [8] trained
with the same setting. Interestingly, the training curves are
similar between SimSiam and SimCLR. SimSiam is slightly
better by 0.7% under this setting.

90

80 ‘ acc. (%)
o SimCLR 91.1
" — SimSfam SimSiam | 91.8
—SimCLR
60 ; ‘ ‘ ‘
0 epochs 800

Figure D.1. CIFAR-10 experiments. Left: validation accuracy of
kNN classification as a monitor during pre-training. Right: linear
evaluation accuracy. The backbone is ResNet-18.





