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The supplementary document is organized as follows:

• In Section 1, we explain the meanings of different se-
mantic roles (i.e., PropBank-style annotations) in our
paper.

• In Section 2, we illustrate more visualization results
generated by our CIC framework.

• In Section 3, we provide the details about each subnet
component of our VSR-guided CIC model.

• In Section 4, we show the details about the merging al-
gorithm of two different semantic structures from two
VSRs.

• In Section 5, we report the details of our experimental
settings.

• In Section 6, we compare the performance between the
Transformer structure and Sinkhorn network in S-level
SSP.

1. Meanings of Different Semantic Roles
In this paper, we mainly follow the types of semantic

roles defined in the PropBank [6]. The main arguments
with their semantic role meanings is listed in Table 3, in-
cluding numbered arguments (e.g., Arg0, Arg2)1 and ar-
gument modifiers (e.g., COM, LOC).

Although there are many kinds of arguments modifiers
in the PropBank, the most common argument modifiers of
the verbs in Flickr30k/COCO Entities are LOC, DIR, GOL
and MNR. The meaning of them as listed as follows:

• LOC: Locative modifiers indicate where some action
takes place.

• DIR: Directional modifiers show motion along some
path.

• GOL: Goal tag is for the goal of the action of the verb.

• MNR: Manner modifiers specify how an action is per-
formed.

1Since semantic role Arg5 is very rare for the verbs of CIC datasets,
and we omit it in Table 3.

Role Type Meaning
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gs Arg0 agent
Arg1 patient
Arg2 instrument, benefactive, attribute
Arg3 starting point, benefactive, attribute
Arg4 ending point
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s

COM comitative
LOC locative
DIR directional
GOL goal
MNR manner
TMP temporal
EXT extent
REC reciprocals
PRD secondary predication
PRP purpose
PNC purpose not cause
CAU cause
DIS discourse
ADV adverbials
ADJ adjectival
MOD modal
NEG negation
LVB light verb

Table 3. List of the main arguments in the PropBank.

2. More Visualization Results

We illustrate more visualization results of generated im-
age captions using the VSR corresponding to the ground
truth caption in Figure 8. Meanwhile, we show more visu-
alization results about diverse image captions conditioned
on different VSRs in Figure 9. More specifically, the VSRs
in the top row of images contain the same verb and differ-
ent semantic role sequences; the VSRs in the bottom row of
images contain a different verb or two verbs.
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Ours: a man jumping a skateboard over a fire hydrant 

on a street.

VSR: jump; <𝐀𝐫𝐠𝟎𝐚𝐠𝐞𝐧𝐭, 1>, <𝐀𝐫𝐠𝟏𝐞𝐧𝐭𝐢𝐭𝐲 𝐢𝐧 𝐦𝐨𝐭𝐢𝐨𝐧, 1>, 

<DIR, 1>, <LOC, 1>

SS: Arg0 – jump – Arg1 – DIR – LOC

GT: a young man jumping a skateboard over a fire 

hydrant on a city street.

Ours: a group standing on a field with kites in the sky.

VSR: stand; <𝐀𝐫𝐠𝟏𝐭𝐡𝐢𝐧𝐠 𝐬𝐭𝐚𝐧𝐝𝐢𝐧𝐠, 1>, <𝐀𝐫𝐠𝟐𝐥𝐨𝐜𝐚𝐭𝐢𝐨𝐧, 1>,

<MNR, 2>

SS: Arg1 – stand – Arg2 – MNR-1 – MNR-2

GT: many people standing in a field with kites in the sky.

Ours: two people sitting at a table with wine glasses and 

wine.

VSR: sit; <𝐀𝐫𝐠𝟏𝐭𝐡𝐢𝐧𝐠 𝐬𝐢𝐭𝐭𝐢𝐧𝐠, 1>, <𝐀𝐫𝐠𝟐𝐥𝐨𝐜𝐚𝐭𝐢𝐨𝐧, 1>, 

<MNR, 2>

SS: Arg1 – sit – Arg2 – MNR-1 – MNR-2

GT: two people sitting at a table with wine glasses and 

bottles.

Ours: a dog running in the grass with a frisbee in his 

mouth.

VSR: run; <𝐀𝐫𝐠𝟎𝐫𝐮𝐧𝐧𝐞𝐫, 1>, <𝐀𝐫𝐠𝟏𝐥𝐨𝐜𝐚𝐭𝐢𝐨𝐧, 1>,

<MNR, 2>

SS: Arg0 – run – Arg1 – MNR-1 – MNR-2

GT: a dog running in the grass with a frisbee in his 

mouth.

Ours: a man riding a horse in a field at sunset.

VSR: ride; <𝐀𝐫𝐠𝟎𝐫𝐢𝐝𝐞𝐫, 1>, <𝐀𝐫𝐠𝟏𝐬𝐭𝐞𝐞𝐝, 1>, 

<LOC, 1>, <MNR, 1>

SS: Arg0 – ride – Arg1 – LOC – MNR

GT: a person riding a horse in a field with a beautiful 

sunset.

Ours: a cat sitting on a chair next to a table with a

book.

VSR: sit; <𝐀𝐫𝐠𝟏𝐭𝐡𝐢𝐧𝐠 𝐬𝐢𝐭𝐭𝐢𝐧𝐠, 1>, <𝐀𝐫𝐠𝟐𝐥𝐨𝐜𝐚𝐭𝐢𝐨𝐧, 1>, 

<LOC, 1>, <MNR, 1>

SS: Arg1 – sit – Arg2 – LOC – MNR

GT: a cat sitting in a chair at a table with a book on it.

Figure 8. Additional examples of generated image captions using the VSR corresponding to the ground truth caption. SS denotes the
learned semantic structures. Different colors show a correspondence between image regions and semantic roles. Best viewed in color.

VSR: eat; <𝐀𝐫𝐠𝟎, 2>, < 𝐀𝐫𝐠𝟏, 1>

Caps: a boy with white hair eating a red apple.

Arg1

Caps: a boy wearing a blue jacket eating a red apple.

VSR: eat; <𝐀𝐫𝐠𝟎, 1>, <Arg1, 1>VSR: wear; <𝐀𝐫𝐠𝟎, 1>, <Arg1, 1>

Arg0 (wear/eat) Arg1 (wear) Arg1 (eat)

VSR: stand; <𝐀𝐫𝐠𝟏, 2>, <𝐀𝐫𝐠𝟐, 1>

Caps: a girl with sunglasses standing in the grass.

Arg1 Arg2

Caps: a girl holding a frisbee in the grass.

Arg0 Arg1

VSR: hold; <𝐀𝐫𝐠0, 1>, <𝐀𝐫𝐠𝟏, 1>, <𝐋𝐎𝐂, 1>

Caps: a girl with sunglasses standing in the grass holding a frisbee.

VSR: hold; <Arg0, 2>, <Arg1, 1>VSR: stand; <Arg1, 2>, <Arg2, 1>

Arg1 (stand)/Arg0 (hold) Arg2 (stand) Arg1 (hold)

Caps: a boy wearing a blue jacket.

Arg0 Arg1

VSR: wear; <𝐀𝐫𝐠0, 1>, <𝐀𝐫𝐠𝟏, 1>

Arg0

LOC

VSR: walk; <𝐀𝐫𝐠𝟎, 1>, < 𝐋𝐎𝐂, 1>

Caps: a man walking on a beach.

LOC

Caps: a man walking with a surfboard on a beach.

VSR: walk; <𝐀𝐫𝐠𝟎, 1>, <MNR, 1>, <LOC, 1>

Arg0 MNR LOC

VSR: drive; <𝐀𝐫𝐠𝟎, 1>, <𝐌𝐍𝐑, 1>

Caps: a train driving under a bridge.

Arg0 MNR

Caps: a train driving on the tracks under a bridge.

Arg0 DIR

VSR: drive; <𝐀𝐫𝐠𝟎, 1>, <𝐃𝐈𝐑, 1>, <𝐌𝐍𝐑, 1>

Caps: a bridge with a train driving on the tracks.

VSR: drive; <MNR, 1>, <Arg0, 1>, <DIR, 1>

Arg0MNR DIR

Caps: a man walking on a beach with a surfboard.

Arg0 LOC

VSR: walk; <𝐀𝐫𝐠0, 1>, <𝐋𝐎𝐂, 1>, <MNR, 1>

Arg0

MNRMNR

Figure 9. Additional examples of diverse image caption generation conditioned on different VSRs. The correspondences between image
regions and noun phrases are indicated by different colors. Best viewed in color.

3. Details of the VSR-guided CIC Model
3.1. Grounded Semantic Role Labeling

In this grounded semantic role labeling (GSRL) step, we
aim to ground each sub-role si in VSR to a proposal set
Bj ∈ B. Specifically, we calculate the similarity score aij
between sub-role si and proposal set Bj by:

qi = [W g
v Πv;W g

s Πsi ; f̄ ],

aij = MLPa(W g
q qi �W

g
f f̄j),

(14)

where f̄ ∈ Rv×1 and f̄j ∈ Rv×1 represent the average-
pooled visual feature of proposal set B and Bj . Πv and Πsi

are the one-hot embeddings for the verb v and sub-role si,
W g

v ∈ Rdv×|V| and W g
s ∈ Rds×|SR| are learnable map-

ping matrices, |V| and |SR| are the size of the vocabulary
of verbs and semantic roles, respectively. [; ] is a concate-

nation operation. Thus, qi is a query vector combining the
verb category, semantic role type and image global features.
W g

q ∈ Ra×(dv+ds+v) andW g
f ∈ Ra×v aim to transform qi

and f̄j into a common space, and � is the element-wise
multiplication. Finally, a four-layer MLP maps the fused
feature into a score aij between 0 and 1.

3.2. Semantic Structure Planner

S-level SSP. In the sentence-level (S-level) SSP, we utilize
a three-layer Transformer encoder to encode the verb v and
semantic role si in the input semantic role sequence S.

H = Transformerenc ({FCa(W e
v Πv +W e

s Πsi)}) , (15)

where Πv and Πsi are the one-hot embeddings for v and si,
W e

v ∈ Rde×|V| and W e
s ∈ Rde×|SR| are learnable map-

ping matrices.
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Then, we use a three-layer Transformer decoder to au-
toregressively generate semantic role sequence (including
the verb). To prevent the occurrence of semantic role se-
quence with duplicates, we generate st with the highest
probability p(st|VSR), where st is in the input semantic
role sequence but hasn’t been generated.

p(st|VSR) = Transformerdec (H,W e
s ΠS<t) , (16)

R-level SSP. Since each semantic role si has variable num-
ber of sub-roles (i.e., ni), we set a constant nmax as the max-
imum number of sub-roles for each semantic role. We em-
ploy the Sinkhorn operation [5] to learn a “soft” permuta-
tion matrix P . For each proposal b∗ ∈ B̂, we encode a
feature vector z̃∗ by:

z̃∗ = MLPb([W
r
v f∗;W

r
c Πc∗ ; Pos(b∗)]), (17)

where f∗ is the detection feature (2048-d); Πc∗ is GloVe
embedding of the region class (300-d); Pos(·) is a 4-d spa-
tial encoding of b∗. W r

x ∈ Rdv×v and W d
c ∈ Rdc×|C|

are learnable mapping matrices, |C| is the size of vocabu-
lary of the detected classes, and MLPb is a two-layer MLP
to mapping the concatenated feature into Rnmax . The posi-
tion encoding function Pos(·) encodes the location feature:
[xmin
WI

, ymin
HI
, xmax
WI

, ymax
HI

], where xmin, ymin, xmax, ymax are the
bounding box coordinates of proposal b∗; WI and HI are
the width and height of the image I .

Then, for each proposal set B̂i ⊂ B̂, we average-pool
all the feature (i.e., {z̃∗}) of each proposal set, denoted as
zi. And we concatenate all feature representations {zi}
to get a nmax × nmax matrix Z. The square matrix Z is
converted into a “soft” permutation matrix P through the
Sinkhorn operator. The operator is K consecutive row-wise
and column-wise normalization, as follows:

S0(Z) = exp(Z),

Sk(Z) = Nc(Nr(Sk−1(Z))),

P = SK(Z),

(18)

where Nr(Z) = Z � (Z1nmax1
T
nmax

) and Nc(Z) = Z �
(1nmax1

T
nmax
Z) are the row-wise and column-wise normal-

ization operations respectively, and � is the element-wise
division, 1nmax is a column vector of nmax ones.

During inference, once K normalizations (we set K =
20 in our experiments) have been performed, the resulting
“soft” permutation matrix can be converted into the final
permutation matrix via the Hungarian algorithm [3].

3.3. Role-shift Captioning Model

Adaptive attention for the shifting probability. The first
LSTM is firstly extended to obtain a sub-role sentinel sgt ,
which models a component encoding the state of the LSTM

at the end of a sub-role. The sentinel is computed as:

lgt = σ(Wigxt +Whgh
1
t−1)

srgt = lgt � tanh(mt)
(19)

where Wig ∈ Rdl×di , Whg ∈ Rdl×dl are learnable
weights, mt ∈ Rdl is the LSTM cell memory and xt ∈
Rdi is the input of the LSTM at time t; � represents the
Hadamard element-wise product and σ is the sigmoid func-
tion.

We then compute a compatibility score between the hid-
den state h1

t and the sentinel vector srgt through a single-
layer neural network; analogously, we compute a compati-
bility score between h1

t and the regions in rt by:

α̂g
t = wT

h tanh(Wsgsr
g
t +Wgh

1
t ),

α̂r
t = wT

h tanh(Wsrrt + (Wgh
1
t )1T ),

(20)

where 1 ∈ Rnt is a vector with all elements set to 1,
nt is the number of regions in rt, wT

h is a row vector,
Wsg ∈ Rda×dl , Wsr ∈ Rda×dv and wh ∈ Rda are learn-
able mapping matrices.

And then we renormalize the attention weight for sub-
role sentinel srgt over attention weights for the sentinel vec-
tor srgt and the regions in rt:

αg
t =

exp α̂g
t

exp α̂g
t +

∑
i exp α̂r

ti

, (21)

where α̂r
ti indicates the i-th element in α̂r

t .
Adaptive attention for the context feature. To further dis-
tinguish the textual and visual words, we build an adaptive
attention mechanism with a visual sentinel [4]. The visual
sentinel vector models a component which the model can
fall back on when it chooses to not attend regions in rt.
Analogously to Eq. (19), it is defined as:

lvt = σ(Wisxt +Whsh
1
t−1),

srvt = lvt � tanh(mt),
(22)

where Wis ∈ Rdl×di and Whs ∈ Rdl×dl are matrices of
learnable weights. Then, the attentive weights are generated
over the visual sentinel vector srvt and the regions in rt:

[αr
t ;αv

t ] = softmax([α̂r
t ;wT

h tanh(Wsssr
v
t +Wgh

1
t )]),

(23)
whereWss ∈ Rda×dl is the learnable weights.

4. Merging Two Semantic Structures
The algorithm of merging two semantic structures (i.e.,

sub-role sequences) is shown in Algorithm 1. Given multi-
ple VSRs, we can continually use this algorithm by regard-
ing the merged semantic structure as the first input structure.
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Algorithm 1 Merging Algorithm of Semantic Structures
Input: Two semantic structures and corresponding se-

quence of grounded visual regions: (Sa,Ra) and (Sb,Rb).
Output: The merged semantic structure S and grounded

visual regionsR.
1: R = Ra

2: // build a sequence of region setsRsame, which is in both
Ra andRb.

3: for each rai ∈ Ra do
4: if rai ∈ Rb then
5: Rsame.append(rai )
6: end if
7: end for
8: // if the rank of the same region sets in Rb is different

fromRa, re-rank those region sets.
9: isame = 0

10: for each rbi ∈ Rb do
11: if rbi ∈ Rsame then
12: rbi = Rsame[isame]
13: isame += 1
14: end if
15: end for
16: // insert region sets inRb \Rsame intoR.
17: for each rbi ∈ Rb do
18: if rbi /∈ Rsame then
19: insert rbi inR right before rbright

20: // rbright is the closest region set in the right of rbi in
Rb, which is also inRsame.

21: end if
22: end for
23: build S according toR

5. Details of Experimental Settings

Parameter Settings. We use the Adam [2] optimizer in
all our experiments. For the grounded semantic role label-
ing model, we initiate the learning rate to 1 × 10−5, which
decreases by a factor of 0.5 for every 3 epochs. To train
the S-level SSP and R-level SSP, the learning rate is set to
1×10−4 and decreases by a factor of 0.6 for every 3 epochs.
And the max training epoch is set to 20 for the models
above. For the role-shift captioning model, the batch size
is set to 100. The learning rate is 5× 10−4 for XE training
and 5 × 10−5 for the RL training, decreasing by a factor
of 0.8 every epoch. The hidden size of both two LSTMs is
set to 512. In the training stage, we apply early stopping
according to the CIDEr-D score in the validation dataset.
In the inference stage, we employ the beam search strategy
with a beam size of 5.
Details of Training and Test. Due to the constraint of
COCO/Flickr30k Entities, there are many captions contain-
ing nouns without region annotation. Thus, we followed [1]

Proposal Model B4 M R C S

C
O

C
O GSRL

SN 15.5 23.0 46.5 159.3 35.1
TF 16.0 23.2 47.1 162.8 35.7

GT
SN 22.3 27.6 54.2 227.9 48.1
TF 23.1 28.0 55.6 235.1 48.9

Fl
ic

kr
30

K GSRL
SN 7.6 14.5 32.1 69.0 17.8
TF 7.9 14.7 32.6 71.6 18.2

GT
SN 9.6 17.3 35.4 86.9 21.2
TF 10.7 18.0 37.1 97.5 21.9

Table 4. Performance comparisons between Transformer (TF) and
Sinkhorn Network (SN) in S-level SSP on dataset COCO Entities
and Flickr30K Entities.

to fill the missing regions with most probable detections of
the image in the training of role-shift caption model and
drop these captions in validation and test stages. And those
are also dropped in other models’ training and test stages.

6. Transformer vs. Sinkhorn Network in the
S-level SSP.

Settings. To sort the sequence of roles from the given con-
trol signal, Sinkhorn network is another alternative network.
To further compare the Transformer and Sinkhorn network
in the S-level SSP, we design a strong baseline by replacing
the Transformer to Sinkhorn network. The results on COCO
Entities and Flickr30K Entities are reported in Table 4.
Results. From Table 4, we can observe that the model with
Transformer can achieve better performance than the model
with Sinkhorn network in all proposal settings (GSRL de-
tected proposals or ground truth proposals) and evalua-
tion metrics on both COCO Entities and Flickr30K Entities
benchmarks. This may because that the Transformer can
better encode the dependency on previous outputs (seman-
tic roles). Thus, we use Transformer for our S-level SSP.
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