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This file provides: (i) details of our optimization-based
method (Section 7), (ii) analysis of the range of effective
distance (Section 8), (iii) introduction of our methods ap-
plying to real scenes (Section 9 with a video demonstration
a).

7. Details of Optimization-based Method
Equation (8) in the main paper can be divided into two

parts to optimize (nl and {d, a, b, c}). To avoid the influence
of noises, we selected the points x that generate two or more
events to optimize nl based on Equation (9) the main paper.
Data preprocessing. We use the estimated nl to optimize
the remaining parameters (i.e., {d, a, b, c}). To mitigate the
impact of noise in the event stream, we first preprocessed
the event streams by clustering the points according to their
cosine values max(〈nl,nx〉 , 0) and obtain 10 subsets of
points. We then generate a sequence for each subset by
averaging the timestamp for points with the same number
of events. Finally, these ten sequences are used to estimate
{d, a, b, c}.
Initial values of {a, b}. We observe that the optimization
results are sensitive to the initial values of {a, b}. To achieve
satisfying results, we obtain a good initialization based on a
small amount of real data. Specifically, we select 40 real
data (10 for each type of lamp) and calculate the mean
and standard deviation of parameters {a, b} using the same
method as that in Section 5.3. Table 4 displays the mean
and standard deviation of parameters {a, b}. We find that
good optimization results can be achieved when the initial
values of {a, b} are set as {5, 0.01}. Note that we use this
initialization for all data with different lamps.

8. Effective Distance
In this section, we discuss the effective distance of our

methods. We find our the light source is too close (< 70
cm), the event camera fails to capture the intensity changes
due to the strong light, as shown in Figure 14. When the

#Equal contribution. ∗Corresponding author.
ahttps://www.bilibili.com/video/BV1c5411N7Do/

Table 4. The mean and standard deviation of parameters {a, b}
(mean ± std) and the effective distance (cm) for different lamps.

Lighting type a b Effective Distance
LED(0.5w) 1.78±1.88 -2.41±5.64 [70, 165]
LED(3w) 2.40±2.45 -4.34±5.66 [70, 300]
LED(5w) 2.11±2.11 0.59±1.13 [165, 300]
ILB (15w) 4.73±4.78 -19.84±20.58 [70, 300]

Figure 14. Examples of failing to capture the intensity changes
due to the strong light.

distance of the light source is too far away, the unexpected
noise of event streams becomes dominant while the events
caused by intensity changing are less obvious (Figure 15).
Therefore, the effective distance of our methods is relevant
to the power of lamps, i.e., a larger effective distance for
lamps with bigger power. We empirically set the effective
distance as those in Table 4 for our experimental lamps and
we sample evenly within the effective distance of each light
source for our experimental data (Section 4.3).

9. Applying to Real Scenarios
In this section, we show real scenarios of using our meth-

ods to estimate lighting in three different real scenarios. A
video demonstration can be found in the attached video. In
our rendering scene, the intensity of the light source is de-
termined by I0 multiplied by a fixed scale (set as 10 in all
our experiments).
Light up a lamp. In the first scenario, we show the results
of lighting up a lamp. This is a scenario that pretty much
matches our analysis in the main paper. We use the same
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Figure 15. Examples of the relationship between distance of light source LED 0.5w and event streams(visualized based on the method
in [2])
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Figure 16. Object insertion results of real indoor scenes. From left to right: the scene image, results from our optimization-based method,
our learning-based method, and GH19 [1]. From upper to bottom: scenarios of light up a lamp, light up two lamps in sequence, remove
the lampshade. Numbers below each image indicates the ground truth or predicted results of light source distance.
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Figure 17. The x-axis represents logarithm of intensity, and the
y-axis represents the time. (a) The intensity changing curve of
the lamp in the scenario of lighting one lamp. (b) The intensity
changing curve of the lamp in the scenario of lighting two lamps.
(c) The intensity changing curve of the lamp in the scenario of
lighting two lamps. (d) The intensity changing curve of the lamp
in the scenario of removing the lampshade.

methods in the main paper to estimate the light source. The
Φ(t) is shown in Figure 17 (a). Figure 16 shows that the
distance estimated by our optimization-based method is the
closest to the ground truth.

Light up two lamps in sequence. In the second scenario,
we explore a scene with multiple light sources. We light up
two lamps in sequence. When we estimate the second light-
ing, I0 is determined by the radiant intensity value captured
with the first lighting. The lighting intensity of our second
lamp for our rendering is calculated based on the estimated
intensity of the first lamp. Figure 17(b), (c) show the Φ(t)
of the first lamp and the second lamp. Note that the inac-
curate shape of curve Φ(t) in Figure 17 (c) is caused by
the strong lighting (can be observed in our video demo, the
event streams also appears in a noisy pattern). We find that
such a pattern has little impact on the accuracy of lighting
estimation in our methods. The cast shadow of the object
inserted by our methods can be clearly observed. These
results indicate that our methods can also be used for multi-
ple light sources estimation.
Remove the lampshade. In the third scenario, we investi-
gate a more general scenario of quickly removing the lamp-
shade (more details can be found in the video). We observe
that Φ(t) becomes a function that describes the action of
removing the lampshade and appears a different shape as
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that for lighting up, as shown in Figure 17(d). Consider-
ing this split time is shorter than turning the light on, we
set the tn as 48 ms. Figure 16 shows that the intensity of
the rabbits rendered by our optimization-based method is
the closest to the environment.
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