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Table 1. Architecture of the encoder
layer input size output size
convolution n4*3 n4*16
downsampling n4*16 n3*16
convolution n3*16 n3*16
downsampling n3*16 n2*16
convolution n2*16 n2*16
downsampling n2*16 n1*16
convolution n1*16 n1*32
downsampling n1*32 n0*32
fully connected n0*32 nz

In this supplementary material, we present more details
about the experiments in the main paper and show addi-
tional experimental results to evaluate our proposed feature
aggregation method. In Sec. 1, we provide details of our
evaluated architecture. Sec. 2 provides the statistical infor-
mation of the datasets. Sec. 3 contains implementation de-
tails to train the models. Sec. 4 presents more results about
the experiments in the main paper. In Sec. 5, we give the
experimental results on different network architectures. In
Sec. 6, we show further ablation study experiments on the
attention mechanism. In Sec. 7, we provide experimental
results of parameter sensitivity studies. We give the model
complexity analysis in Sec. 8.

1. Architecture details

Our model consists of an encoder and a decoder. The
architecture details of the encoder and decoder are listed in
Tables 1 and 2, resepectively. The convolution is Chebyshev
convolution filter with K = 6 Chebyshev polynomials for
CoMA and spiral convolution of 1 hop for Neural3DMM.
The aggregation, including downsampling and upsampling,
is either implemented by QEM as in [6] or accomplished
by our proposed attention based module. The dimension of
latent representation nz is set as one of {8, 16, 32, 64} in the
evaluated settings. The numbers of vertices at hierarchical
levels are summarized in Table 3.

Table 2. Architecture of the decoder
layer input size output size
fully connected nz n0*32
upsampling n0*32 n1*32
convolution n1*32 n1*32
upsampling n1*32 n2*32
convolution n2*32 n2*16
upsampling n2*16 n3*16
convolution n3*16 n3*16
upsampling n3*16 n4*16
convolution n4*16 n4*16
convolution n4*16 n4*3

Table 3. Number of vertices at hierarchical levels
dataset n0 n1 n2 n3 n4

COMA [6] 20 79 314 1256 5023
DFAUST [1] 27 108 431 1723 6890
SYNHAND [4] 5 19 75 299 1193

Table 4. Summary of statistics of the benchmark datasets
name #mesh #vertex #ID #pose/expression
COMA 20K 5023 12 12
DFAUST 40K 6890 10 14
SYNHAND 100K 1193 - -

2. Datset statistics
Table 4 summarizes the statistics of the datasets used for

evaluating 3D models. Since the deformations are random-
ly generated, there is no identity and pose category infor-
mation for the SYNHAND dataset.

3. Implementation details
We implement the models with PyTorch [5]. We adopt

the training settings suggested by the original authors [6, 2].
We train the CoMA and Deep3DMM (spectral) models for
300 epochs with learning rate of 8e-3. We train the Neu-
ral3DMM and Deep3DMM (spiral) models for 200 epochs
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Figure 1. Cumulative Euclidean errors of CoMA method and our Deep3DMM (spectral) method with proposed feature aggregation module
on COMA(left), DFAUST(middle), and SYNHAND(right) datasets
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Figure 2. Back view of the visualization of mapping matrices of down-sampling and up-sampling on COMA dataset with t-SNE (best
viewed in color). The first and second rows are the results of quadric error minimization in [6, 2] and our proposed feature aggregation,
respectively

with learning rate of 1e-3.

4. More experimental results
In this section, we provide more experimental results of

the reconstruction errors and show more visualizations of
the mapping matrices.

4.1. Cumulative Euclidean errors

In Fig. 1, we show the cumulative distribution of the
Euclidean errors with and without our feature aggregation
module for CoMA model with latent dimension of 8. We
can find that for a given error threshold, more vertices can
satisfy the constraint with lower error by applying our fea-
ture aggregation module. This is consistent with the obser-
vation from the qualitative results in the main paper.

4.2. More Visualization of the mapping matrices

In Fig. 2, we show the back view of the mapping matri-
ces on COMA dataset, which is complementary to the front
view in the main paper. The pattern is similar to the front
view in the main paper. In Figs. 3 and 4, we directly show

the values of the mapping matrices on COMA dataset. S-
ince there are large number of columns and rows in each
mapping matrix, a better view can be obtained by zooming
in on the figures. While the mapping matrices obtained by
QEM and our feature aggregation mechanism demonstrate
similar pattern in positions of the dominant elements, the
values of these elements are different for these two method-
s. This is because our proposed feature aggregation mech-
anism enables learning the weights from the training da-
ta automatically. Moreover, the mapping matrices learned
by FA are more dense than those computed by QEM. This
shows that our proposed feature aggregation mechanism al-
so learns the receptive fields.

4.3. Qualitative results with spiral convolutions

In Fig. 5, we show the per vertex Euclidean error of d-
ifferent morphable models on several shapes from the three
datasets for qualitative comparison. The latent dimension is
set as 8. We can find that our model can reduce the large
errors of the compare model (red regions) by providing ac-
curate predictions. Our model can also recover more details
than the compared model, leading to more realistic shapes
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Figure 3. Visualization of mapping matrices of downsampling (top row) and upsampling (bottom row) with existing QEM method on
COMA dataset(best viewed in color and zoom in to see details)
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Figure 4. Visualization of mapping matrices of downsampling (top row) and upsampling (bottom row) with our proposed feature aggrega-
tion module on COMA dataset(best viewed in color and zoom in to see details)
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Figure 5. Qualitative comparison of spiral convolution based mod-
els on COMA (left), DFAUST (middle), and SYNHAND (right)
datasets. The first row is the ground truth shapes. The second and
third rows show the reconstructed shapes, while the fourth and fifth
rows show the corresponding reconstruction errors

and lower reconstruction errors over almost all regions.

4.4. Extrapolation experiment

To further measure the generalization capability of our
model, we follow the setting in [6] to reconstruct expres-
sions that are excluded from the training set. We conduct 12
different experiments to evaluate the performance on each
of the 12 expressions when the remaining 11 expressions
are used as the training samples. We compare the results
(mean, standard deviation and median of the Euclidean dis-
tance) of our model with CoMA [6], PCA and FLAME [3],
as shown in Table 5. The results of the compared methods
are taken from [6]. We can observe that our model achieve
better performance than the compared methods on all ex-
pression sequences.

5. Results with different network architectures

In this section, we evaluate our proposed feature aggre-
gation module on different variants of network architecture,
including the number of convolution filters of the spiral con-
volution and the Chebyshev polynomial order of the spec-
tral convolution.

5.1. Number of convolution filters

To explore the effectiveness of our proposed feature ag-
gregation module with different network architectures, we
conduct experiments on two settings of the number of con-
volution filters. The simple setting denotes the network ar-
chitecture introduced in Tables 1 and 2, where the num-
ber of filters are (3,16,16,16,32) and (32,32,16,16,16,3)
for the encoder and decoder, respectively. The wider set-
ting denotes a larger number of filters, where they are
(3,16,32,64,128) and (128,64,32,32,16,3) for the encoder
and decoder, respectively. Table 6 shows the reconstruc-
tion errors on COMA dataset with the latent dimension
of 8 for Neural3DMM and out spiral convolution based
Deep3DMM. We can see that our model performs better
than the baseline model in both scenarios. Note that our
model has the same inference parameters as the compared
model. Our model only introduces 8 + (5023 + 1256 +
1256 + 314 + 314 + 79 + 79 + 20)× c parameters for the
keys and querys at the training stage.

5.2. Chebyshev polynomial order

In Table 7, we show the results for variant Chebshev
polynomial order K. The experiments are again conduct-
ed on COMA dataset with the latent dimension as 8. We
can see that model with our feature aggregation module can
consistently perform better.
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Table 5. Reconstruction errors on extrapolation setting
Deep3DMM(spectral) CoMA [6] PCA FLAME [3]

Sequence Mean Error Median Mean Error Median Mean Error Median Mean Error Median
bareteeth 1.190±1.524 0.691 1.376±1.536 0.856 1.957±1.888 1.335 2.002±1.456 1.606
cheeks in 1.071±1.322 0.646 1.288±1.501 0.794 1.854±1.906 1.179 2.011±1.468 1.609
eyebrow 0.851±1.011 0.505 1.053±1.088 0.706 1.609±1.535 1.090 1.862±1.342 1.516
high smile 1.037±1.164 0.614 1.205±1.252 0.772 1.841±1.831 1.246 1.960±1.370 1.625
lips back 1.060±1.590 0.580 1.193±1.476 0.708 1.842±1.947 1.198 2.047±1.485 1.639
lips up 0.902±1.114 0.497 1.081±1.192 0.656 1.788±1.764 1.216 1.983±1.427 1.616
mouth down 0.847±1.062 0.517 1.050±1.183 0.654 1.618±1.594 1.105 2.029±1.454 1.651
mouth extreme 1.139±1.468 0.640 1.336±1.820 0.738 2.011±2.405 1.224 2.028±1.464 1.613
mouth middle 0.745±0.934 0.439 1.017±1.192 0.610 1.697±1.715 1.133 2.043±1.496 1.620
mouth open 0.741±0.996 0.431 0.961±1.127 0.583 1.612±1.728 1.060 1.894±1.433 1.544
mouth side 1.103±1.711 0.567 1.264±1.611 0.730 1.894±2.274 1.132 2.090±1.510 1.659
mouth up 0.835±0.983 0.501 1.097±1.212 0.683 1.710±1.680 1.159 2.067±1.485 1.680

Table 6. Reconstruction errors with different settings of convolu-
tion filters

method simple wider
Neural3DMM 0.785 0.525
Deep3DMM (spiral) 0.487 0.420

Table 7. Reconstruction errors with different order K of Chebyshev
polynomial

method CoMA Deep3DMM (spectral)
K=6 0.939 0.519
K=3 1.031 0.558

6. Ablation studies

In this section, we provide ablation studies to show the
effect of each component in the model. The experiments are
conducted on COMA dataset by using the spectral convolu-
tion with the latent dimension as 8.

6.1. Effect of the topk selection

In Fig. 6, we show the reconstruction errors with and
without the topk selection for the mask operation in the fea-
ture aggregation module. As we can see, the error is reduced
by applying the topk selection strategy in the decoder by a
large margin. And the performance is slightly deteriorated
by applying the topk selection strategy in the encoder. In
this work, we choose to apply the topk selection on both the
encoder and decoder for the consideration of the speed. By
adopting the topk selection strategy, the generated mapping
matrices are guaranteed to be sparse, which can be lever-
aged to accelerate both the training and the inference of the
model.

w/o topk w/ topk
encoder

w/o topk

w/ topk

de
co

de
r 0.591 0.600

0.511 0.519

Figure 6. Reconstruction errors w/ and w/o applying the topk se-
lection in FA module

Table 8. Reconstruction errors with different mapping matrices
method QEM No fusing Fusing
Error 0.939 0.693 0.519

6.2. Effect of fusing mapping matrices

We also study the effect of fusing learned mapping ma-
trices with precomputed mapping matrices. The results are
shown in Table 8. By using the learned mapping matri-
ces only, we can also significantly reduce the reconstruc-
tion error. Combining both mapping matrices by a linear
fusion, we can further lower the reconstruction error. This
is possible due to that the precomputed mapping matrices
can benefit the training of the other components, including
the convolution and the fully connected layers, especially at
the early stage of the training phase.

4



1.00.90.80.70.60.50.40.30.20.1
wa

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60
Er
ro
r (
m
m
)

Figure 7. Reconstruction errors with different initialization value
for the weight wa
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Figure 8. Reconstruction errors with different number of channels
for the keys and queries in the feature aggregation module

7. Parameter sensitivity studies
In this section, we provide parameter sensitivity studies

to get better understanding of the proposed feature aggre-
gation module. The experiments are conducted on COMA
dataset by using the spectral convolution with the latent di-
mension as 8.

7.1. Initialization of the weight wa

In Fig. 7, we show the reconstruction errors by training
the model with different initialization values for the weight
wa. While a smaller weight can lead to better performance,
the performance variation is not notable.

7.2. Number of channel c

In Fig. 8, we show the variation of the reconstruction er-
ror with respect to the dimension of channels of the keys
and queries in the feature aggregation module. By increas-
ing c from 2 to 18, we can observe a significant drop in the
corresponding error. The performance is almost saturated
when c is larger than 18. Note that we can surpass the QEM
method even setting c = 2 for our feature aggregation mod-
ule.
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Figure 9. Reconstruction errors with different k for topk selection
in the encoder
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Figure 10. Reconstruction errors with different k for topk selection
in the decoder

7.3. Top k for the encoder and decoder

In Figs. 9 and 10, we show the variation of the recon-
struction error with respect to the k value in the encoder
and decoder, respectively. By changing the k value in the
encoder, the performance is only slightly influenced. In
contrast, larger k in the decoder would lead to better gen-
eralization with lower error.

7.4. Initialization of the keys and queries

We also study the effect of different initialization
schemes of the keys and queries. Table 9 gives the re-
construction errors of three different initialization, namely
normal, uniform and template. In the normal and uniform
settings, we initialize the keys and queries by the random
normal and uniform distributions, respectively. In the pre-
computed setting, we use the vertex positions at each level
computed by the mesh decimation to initialize the keys and
queries. This is the initialization we adopt in this paper.
The precomputed based initialization outperforms the oth-
ers significantly.
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Table 9. Reconstruction errors with different initializations for the
keys and queries

method normal uniform precomputed
error (mm) 0.649 0.619 0.519

8. Complexity
By directly parameterizing the mapping matrices, the

complexity is with quadric scale O(nlnl−1). By using our
attention based mechanism, the complexity to model the
mapping matrices is reduced to a linear scale O(nl + nl−1)
which parameterizes the keys and queries. Thus, we provide
a feasible solution to circumvent the over-parameterziation
problem.
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