
Supplementary Material of
Learning a Non-blind Deblurring Network for Night Blurry Images

Liang Chen1∗†, Jiawei Zhang2‡†, Jinshan Pan3, Songnan Lin2, Faming Fang1, Jimmy S. Ren2,4

1 Shanghai Key Laboratory of Multidimensional Information Processing,
School of Computer Science and Technology, East China Normal University

2 SenseTime Research
3 Nanjing University of Science and Technology

4 Qing Yuan Research Institute, Shanghai Jiao Tong University, Shanghai, China

In this supplementary material, we provide,

1. Detailed steps to solve Eq. (9) of the manuscript in Sec. 1;

2. Detailed network configurations of NBDN, including the configurations of CEU, LRU, and HPEU in Sec. 2;

3. More analyses of the proposed algorithm in Sec. 3, including:

- Intermediate results of NBDN from different iterations in Sec. 3.1.

- Robustness of NBDN with a larger range of noises in Sec. 3.2 and different enlarging factors in Sec. 3.3.

- Effectiveness of the estimated confidence map from CEU in Sec. 3.4.

- Effectiveness of the estimated hyper-parameters from HPEU in Sec. 3.5.

- Running time comparisons in Sec. 3.6.

- Comparison in blurry image dataset without saturation [15] in Sec. 3.7.

4. More experimental results for synthetic and real blurry images in Sec. 4.

∗This work was done when Liang Chen was an intern at SenseTime.
†equal contribution
‡Corresponding author



1. Detailed steps for solving Eq. (9) in the manuscript
Eq. (9) in the manuscript is given by,

It+1 = argmin
I
‖M t ◦ (B − I ⊗K)‖2 + λ‖I − U t‖2, (1)

where B, I,K,M , and U are the blurry image, latent image, blur kernel, and learned prior; t is the updating index; λ is the
weight hyper-parameter; we use ⊗ and ◦ to denote the convolution operation and Hadamard product. Taking the derivate of
the minimization problem in Eq. (1) respect to I and setting it to zero, we have,

AI = b, (2)

where A = (MK)T MK + λ, b = (MK)T MB + λU; U, I and B denote the vectorized form of U t, I and B, K is the toeplitz
matrix of K w.r.t. I; M is M t in a diagnoal manner.

Due to the involvement of the hardmard product operation, we cannot solve the above equation with fast Fourier transform
(FFT). The overall steps for solving Eq. (1) are shown in Algorithm 1.

Algorithm 1 CG-based deconvolution step (detailed steps for solving Eq. (9) in the manuscript).

Input: B, I, U, M, K, λ
Input: iteration number smax

Output: Ismax

1: b = λU + KT MT MB
2: A = KT MT MK + λ
3: P0 = b− AI0
4: r0 = P0

5: for s = 0 to smax do
6: αs = (rTs rs)/(PT

s APs)
7: Is+1 = Is + αsPs

8: rs+1 = rs − αsAPs

9: βs = (rTs+1rs+1)/(rTs rs)
10: Ps+1 = rs+1 + βsPs

11: end for
B, I, U, M are B, I , U , M in vectorized forms; K is the toeplitz matrix of K w.r.t. I; 0 and 1 denote the all-zero and all-one
matrices.



2. Detailed network configurations of NBDN
The proposed NBDN has three individual sub-networks (i.e. CEU, LRU, and HPEU). In this section, we will give detailed

configurations of each sub-network.

2.1. Configurations of CEU

CEU takes the blurry image, updated latent image, and the convolving result (i.e. B, It, and It⊗K) as inputs and outputs
a one-channel confidence map M t, it is constructed with two convolution layers and three res-blocks [6], and each of the
res-blocks contains two convolution layers to generate 16 features. Table 1 shows the details of CEU in one iteration. We
add a rectified linear unit (ReLU) after every convolution layer except the last one for each res-block. We add the outputs
from the first convolution layer and the third res-block at the end of CEU, which is further attached with a sigmoid layer to
generate the final result.

2.2. Configurations of LRU

LRU takes the updated latent image It as input and output the prior information U t, it is implemented by a 3-scale
lightweight U-net model [12]. Specifically, each scale in the U-net model is applied with two convolutions, and each con-
volution layer is attached with a ReLU layer for activating. The features from the first to the last scale are 8, 16 and 32,
respectively. The detailed network configurations are demonstrated in Table 2.

2.3. Configurations of HPEU

The inputs of HPEU include the updated latent image It and the hidden state tensor HSt, and it generates an updated
hidden state HSt+1 and the hyper-parameter λt+1. HPEU is constructed with eight convolution layers and a convGRU
module [1] as detailed illustrated in Table 3 and Table 4. In practice, we use the first three convolution layers (i.e. conv1,
conv2 and conv3 in Table 3) of HPEU to convolve It to obtain information xt from the current latent image, where an
adaptive pooling step is attached after the second convolution step. Then, we use the fourth convolution layer (i.e. conv4 in
Table 3) of HPEU to process HSt. The output information ht from this step is then integrated with xt by following steps,

zt = σ(Wz ⊗ xt + Uz ⊗ ht), (3)
rt = σ(Wr ⊗ xt + Ur ⊗ ht), (4)
h̃t+1 = tanh(W ⊗ xt + U ⊗ (rt ◦ ht)), (5)
HSt+1 = (1− zt) ◦ ht + zt ◦ h̃t+1, (6)

where σ denotes the sigmoid function; Wz, Uz, Wr, Ur, W and U are the kernels correspond to the layers presented in
Table 4; The updated information HSt+1 will be used for the next updating step. To obtain the hyper-parameter, we use the
last four convolution layers of HPEU (i.e. conv5 - conv8 in Table 3) to process HSt+1, and then we attach a fully-connected
layer at the end of HPEU to obtain the final result.

Table 1: Architecture of CEU in one iteration.

block layer kernel size stride pad kernel number summation
input B, It, It ⊗K

conv1 3× 3 1 1 16

res-block1 conv2 / relu 3× 3 1 1 16
conv3 3× 3 1 1 16 conv1

res-block2 conv4 / relu 3× 3 1 1 16
conv5 3× 3 1 1 16 conv3

res-block3 conv6 / relu 3× 3 1 1 16
conv7 3× 3 1 1 16 conv1, conv5
conv8 3× 3 1 1 1

sigmoid
output M t



Table 2: Architecture of LRU in one iteration.

block layer kernel size stride pad kernel number concatenate
input It

original scale1 conv1 / relu 3× 3 1 1 8
conv2 / relu 3× 3 1 1 8

down scale1
pool ↓ 2

conv3 / relu 3× 3 1 1 16
conv4 / relu 3× 3 1 1 16

down scale2
pool ↓ 2

conv5 / relu 3× 3 1 1 32
conv6 / relu 3× 3 1 1 32

down scale3
pool ↓ 2

conv7 / relu 3× 3 1 1 32
conv8 / relu 3× 3 1 1 32 conv6

up scale1
bilinear ↑ 2

conv9 / relu 3× 3 1 1 16
conv10 / relu 3× 3 1 1 16 conv4

up scale2
bilinear ↑ 2

conv11 / relu 3× 3 1 1 8
conv12 / relu 3× 3 1 1 8 conv2

up scale3
bilinear ↑ 2

conv13 / relu 3× 3 1 1 8
conv14 / relu 3× 3 1 1 8

original scale2 conv15 / relu 3× 3 1 1 1
output U t

Table 3: Architecture of HPEU

layer kernel size stride pad kernel number input output output size
conv1 / relu 3× 3 1 1 64 It

conv2 3× 3 2 1 64
pool adaptive 64× 128× 128

conv3 / relu 3× 3 1 1 32 xt 32× 128× 128
conv4 / relu 3× 3 1 1 32 HSt ht 32× 128× 128
convGRU xt, ht HSt+1 32× 128× 128

conv5 / relu 3× 3 2 1 32 HSt+1 32× 64× 64
conv6 / relu 3× 3 2 1 32 32× 32× 32
conv7 / relu 3× 3 2 1 16 16× 16× 16

conv8 3× 3 2 1 16 16× 8× 8
linear λt 1

Table 4: Architecture of convGRU

name kernel size stride pad kernel number input output
conv Wz 3× 3 1 1 32 xt

conv Uz 3× 3 1 1 32 ht

sigmoid zt

conv Wr 3× 3 1 1 32 xt

conv Ur 3× 3 1 1 32 ht

sigmoid rt

conv W 3× 3 1 1 32 xt

conv U 3× 3 1 1 32 rt, ht

tanh h̃t+1

zt, ht, h̃t+1 HSt+1



3. More Analysis
For all the compared learning-based methods, we use original implementations of IRCNN [19], RGDN [5], CPCR[4]

and fine-tune the networks of FCNN [18] and SRN [16] using our training dataset. The hyper-parameters used for the
optimization-based methods [2, 9, 7] are set using suggested skills from the authors for better results.

3.1. Intermediate results

Intermediate estimated latent images and confidence maps are shown in Figure 1. It shows that NBDN can progressively
detect the regions that violate the linear blur model and remove noises and artifacts during the iteration process.

(a) Input (b) M1 (c) M2 (d) M3

(e) Initial image I1 (f) I2 (g) I3 (h) I4

Figure 1: Intermediate results of NBDN. (b) - (d) are the intermediate confidence maps over iterations. Note M0 is set as an
all-zero matrix so we do not show it in here. (f) - (h) are the updated latent images correspond to (b) - (d). The updated latent
image contains fewer noises and artifacts in the saturated regions over iterations. Please zoom-in for a better view.



3.2. Robust to noises

In our manuscript, NBDN is trained in the images with noise levels ranging from 0 to 1% 1. In this section, we also show
that NBDN can handle images with larger noises. We train NBDN with noise level ranging from 0 to 3%, and test it on
the provided testing dataset with the same noise setting. Results shown in Table 5 show that NBDN still performs favorably
against state-of-the-art methods when the blurry image is with large noises.

We further verify the robustness of NBDN with respect to different noises by adding only 1% or 2% random Gaussian
noises to the clean images in the testing dataset. Results from different models are shown in Table 6 and Table 7. We note that
NBDN can generate favorably outputs among the compared models. Even though the hyper-parameters are learned during
training in FCNN [18], they are fixed in inference. With the help of the proposed HPEU, our network can dynamically adjust
the hyper-parameters and handle different noise levels. That is the major reason it performs better than FCNN [18] in Table 6
and Table 7.

Table 5: Evaluations on the proposed testing dataset with 0 - 3% noises.

Cho [2] Hu [7] Pan [9] Dong [3] SRN [16] FCNN [18] IRCNN [19] RGDN [5] CPCR [4] Ours

Results with GT blur kernels

PSNR 26.22 24.02 26.47 25.43 24.58 27.21 24.51 25.42 26.01 28.06
SSIM 0.7496 0.7144 0.7837 0.7856 0.7560 0.8500 0.6506 0.6529 0.7183 0.8405

Results with blur kernels from [10]

PSNR 25.94 23.85 25.73 24.82 24.58 25.77 23.33 25.12 25.70 27.15
SSIM 0.7686 0.7265 0.7865 0.7780 0.7560 0.7899 0.6283 0.6595 0.7383 0.8330

Table 6: Average PSNR and SSIM for 1% noises on the
given test dataset.

GT kernel kernels from [10]
Cho [2] 28.42 / 0.8716 27.11 / 0.8524

SRN [16] 24.47 / 0.7887 24.47 / 0.7887
FCNN [18] 29.03 / 0.8784 26.87 / 0.8560
RGDN [5] 27.81 / 0.8269 26.51 / 0.8293

Ours W/O HPEU 28.20 / 0.8712 26.23 / 0.8534
Ours 29.50 / 0.8845 28.50 / 0.8742

Table 7: Average PSNR and SSIM for 2% noises on the
given test dataset.

GT kernel kernels from [10]
Cho [2] 26.54 / 0.8012 25.82 / 0.8032

SRN [16] 24.36 / 0.7848 24.36 / 0.7848
FCNN [18] 27.13 / 0.8224 26.64 / 0.8135
RGDN [5] 26.96 / 0.7378 26.49 / 0.7429

Ours W/O HPEU 26.87 / 0.8221 26.05 / 0.8154
Ours 27.86 / 0.8343 27.11 / 0.8280

1The 1% noise level here denotes Gaussian noise with zero mean and the standard derivation of 2.55 corresponds to the image in a range of 0 to 255.



3.3. Robust to the enlarging factors

In our manuscript, we enlarge the range of images by a factor of 1.2, and then clip the images into the dynamic range of
0 to 1 to synthesize the saturated pixels for both the training data and the test data the same as [11] (illustrated in Section 3.1
in the manuscript). To evaluate the robustness of NBDN with respect to different enlarging factors, we further train NBDN
in the dataset with a dynamic range of enlarging factors (ranging from 1 to 2). The same training data is used for finetuning
[18, 16]. Table 8 and Table 9 show that NBDN is also effective when the test images are synthesized by larger enlarging
factors (i.e. 1.5 and 2).

Table 8: Comparison of the results from different models
when the test dataset is synthesized with the enlarging factor
of 1.5.

GT kernel kernels from [10]
Cho [2] 22.34 / 0.7467 22.02 / 0.7341

SRN [16] 22.96 / 0.7830 22.96 / 0.7830
FCNN [18] 24.41 / 0.8463 22.73 / 0.8024
RGDN [5] 23.68 / 0.7977 23.04 / 0.7838

Ours 26.17 / 0.8698 25.01 / 0.8504

Table 9: Comparison of the results from different models
when the test dataset is synthesized with the enlarging factor
of 2.

GT kernel kernels from [10]
Cho [2] 20.50 / 0.7065 20.29 / 0.6955

SRN [16] 21.83 / 0.7533 21.83 / 0.7533
FCNN [18] 21.10 / 0.7604 20.48 / 0.7298
RGDN [5] 20.76 / 0.7316 20.44 / 0.7206

Ours 23.09 / 0.8134 22.52 / 0.7963

Table 10: Comparison on the test dataset with respect to different confidence map estimation methods.

GT blur kernels Estimated kernels from [10]
M fixed as 1 M from [2] ad-hoc M M from CEU M fixed as 1 M from [2] ad-hoc M M from CEU

Acc. of M 0.7929 0.7998 0.8145 0.8578 0.7854 0.7947 0.8051 0.8578
PSNR 29.36 29.47 29.45 30.06 28.20 28.25 27.92 28.45
SSIM 0.9037 0.9037 0.8930 0.9065 0.8878 0.8877 0.8775 0.8901



3.4. Effectiveness of CEU

The confidence map M plays an important role in our deblurring pipeline. It detects the pixels, i.e. dark regions in
Figure 2 (e), that do not satisfy the linear blur model:

B = C(K ⊗ I) 6= B̂ = K ⊗ C(I), (7)

where C(·) is the clipping function that clips the saturated pixel to 1 and B is the input blurry image. C(I) is the ground
truth clear image and B̂ is the blurred image generated from the ground truth clear image. We want to point out that the
these regions are NOT the same with the saturated regions and most of the regions detected by Eq. (7) are the regions near
the boarder of the saturated regions which are shown in Figure 2 (e). In this section, we will analysis the influence of the
confidence map estimated by different methods in the proposed NBDN.

As shown in Figure 2 (f), when NBDN is trained with all the confidence values in M fixed as one, the saturated pixels
will disturb the deblurring process, resulting in artifacts in the restored image. The work in [2] suggests a predefined function
to compute M , which requires a heuristic guess of the density of saturated pixels, and the computed results rely heavily on
the residual information (i.e. B − I ⊗K). However, Figure 2 (b) shows that this function often detects image edges instead
of saturated regions, and the artifacts in the restored result can not be fully removed when we use this method to compute
M while training NBDN (Figure 2 (g)). Meanwhile, we show that if M is defined in an ad-hoc strategy (pixels with values
larger than a predefined threshold 2 in the blurry image are saturated, and the corresponding confidence values are set to be
zeros as shown in Figure 2 (c)). However, as we analyzed before, the saturated regions in the blurry image are not the same
with the pixels with low confidence. The pixels in the middle of the white areas of billboard should not have low confidence
and the letters in the billboard around by saturated pixels should have low confidence. As a result, the deblurred image in
Figure 2 (h) contains artifacts.

In comparison, CEU uses the blurry image and the updated latent image to guide the estimation, and it shows a better
estimation result with most of the saturated pixels correspond to small confidence values. Figure 2 (i) shows that NBDN
restores a visually more pleasant result when M is estimated from CEU. We further compute the accuracy of the estimated
confidence maps respect to the ground truth maps. Quantitative evaluations of the four schemes on the test dataset are
shown in Table 10, where M from CEU is with the highest accuracy and leads to the best performance among the compared
approaches when integrated into NBDN.

(a) Input (b) M from [2] (c) ad-hoc M (d) M from CEU (e) GT M

(f) NBDN with M = 1 (g) NBDN + (b) (h) NBDN + (c) (i) NBDN + (d) (j) GT image

Figure 2: Comparisons of the results by different confidence map estimation methods. Note in (b) - (e), dark pixels indicate
small confidence values. The ad-hoc strategy in (c) can be found in Section 3.4. The results demonstrate that CEU is able to
generate a properer confidence map, which leads to fewer artifacts in the saturated regions.

2We use 0.85 for the threshold value in this setting.



3.5. Effectiveness of information from the hidden state for estimation the hyper-parameters

HPEU takes advantage of both the information from the current updated latent image and the information from the previous
iterations, which are stored in the hidden state (i.e. HS), to estimate the hyper-parameters. When the blurry images are
contaminated with severer noises, the generated hyper-parameters are larger in most iteration stages as shown in Figure 3.
Questions may be raised whether the information inHS help the current hyper-parameter estimation. To this end, we conduct
an ablation study on the given test dataset to evaluate the effectiveness of the stored information in the estimation process.
As shown in Table 11, HPEU can lead to better results when it is trained with information from previous iterations during the
hyper-parameter estimation process.

Table 11: Effectiveness of the information from hidden state (HS) for estimating the hyper-parameters.

GT blur kernels Estimated kernels from [10]
HPEU W/O HS HPEU with HS HPEU W/O HS HPEU with HS

PSNR 27.24 30.06 26.16 28.45
SSIM 0.8124 0.9065 0.7985 0.8901

10 20 30 40 50 60 70 80 90 100

Image indexes

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

V
a
lu

e
s
 o

f 
th

e
 h

y
p
e
r-

p
a
ra

m
e
te

r

×10
-3

Noise-free images

Images with 0.5% noise

Images with 1% noise

(a) Values of λ in the
1st stage of NBDN

10 20 30 40 50 60 70 80 90 100

Image indexes

1

1.5

2

2.5

3

3.5

4

4.5

V
a
lu

e
s
 o

f 
th

e
 h

y
p
e
r-

p
a
ra

m
e
te

r

×10
-3

Noise-free images

Images with 0.5% noise

Images with 1% noise

(b) Values of λ in the
2nd stage of NBDN

10 20 30 40 50 60 70 80 90 100

Image indexes

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
V

a
lu

e
s
 o

f 
th

e
 h

y
p
e
r-

p
a
ra

m
e
te

r Noise-free images

Images with 0.5% noise

Images with 1% noise

(c) Values of λ in the
3rd stage of NBDN

10 20 30 40 50 60 70 80 90 100

Image indexes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a
lu

e
s
 o

f 
th

e
 h

y
p
e
r-

p
a
ra

m
e
te

r Noise-free images

Images with 0.5% noise

Images with 1% noise

(d) Values of λ in the
4th stage of NBDN

Figure 3: Sorted estimated hyper-parameters with respect to different levels of noise in different iteration stages of NBDN in
the given test dataset.

2Our GPU does not have enough memory to deconvolve images with these sizes for corresponding methods.



3.6. Running time comparisons

The proposed method performs favorably against other state-of-the-art methods in terms of runtime. Table 12 summarizes
the average runtime of representative methods with different image resolutions. All the methods are run on the same PC with
an Intel(R) Xeon(R) CPU and an Nvidia Tesla 1080 GPU.

3.7. Images without saturation

Our method can also deblur blurry images without saturation. We compare our method on the dataset provided by Sun et
al. [15] and compare it against state-of-the-art methods. Results in Table 13 demonstrate that our method performs favorably
against existing methods when blurry images are without saturated pixels.

Table 12: Running time (seconds) comparisons on images with different sizes.

300×300 800 × 800 1200 × 1200
Cho [2] (CPU) 5.25 77.63 169.87
Pan [9] (CPU) 15.41 239.79 574.86

FCNN [18] 0.13 N/A3 N/A
IRCNN [19] 1.11 2.30 5.34
RGDN [5] 5.34 23.61 N/A

Our 0.25 1.81 4.86

Table 13: Comparison of the results from different models on dataset without saturation [15].

GT kernel kernels from [9]
Krishnan [8] 31.57 / 0.87 29.94 / 0.84
Zoran [20] 33.00 / 0.89 30.61 / 0.87

Schuler [14] 31.82 / 0.86 28.76 / 0.80
Schmidt [13] 31.93 / 0.87 30.22/0.86

FCNN 32.82 / 0.90 30.39 / 0.87
Ours 32.91 / 0.90 31.54 / 0.86

4. More Examples
In this section, we provide more experimental examples both from the synthetic dataset and real-world. The hyper-

parameters for the compared methods are tuned using the suggested skills from the authors to obtain better results.



(a) Input (b) Cho et al. [2] (c) Whyte et al. [17]

(d) Hu et al. [7] (e) Dong et al. [3] (f) Pan et al. [9]

(g) SRN [16] (h) FCNN [18] (i) IRCNN [19]

(j) RGDN [5] (k) Our (l) GT

Figure 4: An example from the synthetic dataset. The robust optimization-based methods [2, 17, 7, 9] can handle the saturated
pixels. But details are also erased in their results. Our method can generate a result with fine details and less artifacts in the
satureated regions than other learning-based arts [18, 19, 5].



(a) Input (b) Cho et al. [2] (c) Whyte et al. [17]

(d) Hu et al. [7] (e) Dong et al. [3] (f) Pan et al. [9]

(g) SRN [16] (h) FCNN [18] (i) IRCNN [19]

(j) RGDN [5] (k) Our (l) GT

Figure 5: An example from the synthetic dataset. The robust optimization-based methods [2, 17, 7, 9] can handle the saturated
pixels. But they are ineffective when the image is with severe noises. Our method can generate a result with fine details and
less artifacts in the satureated regions compared to other learning-based arts [18, 19, 5].



(a) Input (b) Cho et al. [2] (c) Whyte et al. [17]

(d) Hu et al. [7] (e) Dong et al. [3] (f) Pan et al. [9]

(g) SRN [16] (h) FCNN [18] (i) IRCNN [19]

(j) RGDN [5] (k) Our (l) GT

Figure 6: An example from the synthetic dataset. The robust optimization-based methods [2, 17, 7, 9] can handle the
saturated pixels. But details are erased in their results. Our method can generate a result with fine details and less artifacts in
the satureated regions compared to other learning-based arts [18, 19, 5].



(a) Input (b) Cho et al. [2] (c) Whyte et al. [17]

(d) Hu et al. [7] (e) Dong et al. [3] (f) Pan et al. [9]

(g) SRN [16] (h) FCNN [18] (i) IRCNN [19]

(j) RGDN [5] (k) Our (l) GT

Figure 7: An example from the synthetic dataset. The robust optimization-based methods [2, 17, 7, 9] can handle the saturated
pixels. But they are ineffective when the image is with severe noises. Our method can generate a result with fine details and
less artifacts in the satureated regions compared to other learning-based arts [18, 19, 5].



(a) Input (b) Cho et al. [2]

(c) Whyte et al. [17] (d) Hu et al. [7]

(e) Dong et al. [3] (f) Pan et al. [9]

(g) SRN [16] (h) FCNN [18]

(j) RGDN [5] (k) Our

Figure 8: A real example with saturated pixels. Our method generates comparable results with state-of-the-art methods.



(a) Input (b) Cho et al. [2]

(f) Krishnan et al. [8] (g) SRN [16]

(g) IRCNN [19] (h) FCNN [18]

(j) RGDN [5] (k) Our

Figure 9: A real example in a severely low-light condition. Our method generates comparable results with other models.



(a) Input (b) Cho et al. [2]

(f) Krishnan et al. [8] (g) SRN [16]

(g) IRCNN [19] (h) FCNN [18]

(j) RGDN [5] (k) Our

Figure 10: A real example in a severely low-light condition. Our method generates comparable results with other models.



References
[1] Nicolas Ballas, Li Yao, Chris Pal, and Aaron Courville. Delving deeper into convolutional networks for learning video representations.

arXiv preprint arXiv:1511.06432, 2015. 3
[2] Sunghyun Cho, Jue Wang, and Seungyong Lee. Handling outliers in non-blind image deconvolution. In ICCV, 2011. 5, 6, 7, 8, 10,

11, 12, 13, 14, 15, 16, 17
[3] Jiangxin Dong, Jinshan Pan, Deqing Sun, Zhixun Su, and Ming-Hsuan Yang. Learning data terms for non-blind deblurring. In ECCV,

2018. 6, 11, 12, 13, 14, 15
[4] Thomas Eboli, Jian Sun, and Jean Ponce. End-to-end interpretable learning of non-blind image deblurring. arXiv preprint

arXiv:2007.01769, 2020. 5, 6
[5] Dong Gong, Zhen Zhang, Qinfeng Shi, Anton van den Hengel, Chunhua Shen, and Yanning Zhang. Learning an optimizer for image

deconvolution. IEEE TNNLS, 2020. 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17
[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR, 2016. 3
[7] Zhe Hu, Sunghyun Cho, Jue Wang, and Ming-Hsuan Yang. Deblurring low-light images with light streaks. In CVPR, 2014. 5, 6, 11,

12, 13, 14, 15
[8] Dilip Krishnan and Rob Fergus. Fast image deconvolution using hyper-laplacian priors. In NIPS, 2009. 10, 16, 17
[9] Jinshan Pan, Zhouchen Lin, Zhixun Su, and Ming-Hsuan Yang. Robust kernel estimation with outliers handling for image deblurring.

In CVPR, 2016. 5, 6, 10, 11, 12, 13, 14, 15
[10] Jinshan Pan, Deqing Sun, Hanspeter Pfister, and Ming-Hsuan Yang. Blind image deblurring using dark channel prior. In CVPR,

2016. 6, 7, 9
[11] Wenqi Ren, Jiawei Zhang, Lin Ma, Jinshan Pan, Xiaochun Cao, Wangmeng Zuo, Wei Liu, and Ming-Hsuan Yang. Deep non-blind

deconvolution via generalized low-rank approximation. In NIPS, 2018. 7
[12] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In

MICCAI, 2015. 3
[13] Uwe Schmidt and Stefan Roth. Shrinkage fields for effective image restoration. In CVPR, 2014. 10
[14] Christian J Schuler, Harold Christopher Burger, Stefan Harmeling, and Bernhard Scholkopf. A machine learning approach for non-

blind image deconvolution. In CVPR, 2013. 10
[15] Libin Sun, Sunghyun Cho, Jue Wang, and James Hays. Edge-based blur kernel estimation using patch priors. In IEEE International

Conference on Computational Photography, 2013. 1, 10
[16] Xin Tao, Hongyun Gao, Xiaoyong Shen, Jue Wang, and Jiaya Jia. Scale-recurrent network for deep image deblurring. In CVPR,

2018. 5, 6, 7, 11, 12, 13, 14, 15, 16, 17
[17] Oliver Whyte, Josef Sivic, and Andrew Zisserman. Deblurring shaken and partially saturated images. IJCV, 2014. 11, 12, 13, 14, 15
[18] Jiawei Zhang, Jinshan Pan, Wei-Sheng Lai, Rynson W. H. Lau, and Ming-Hsuan Yang. Learning fully convolutional networks for

iterative non-blind deconvolution. In CVPR, 2017. 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17
[19] Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang. Learning deep cnn denoiser prior for image restoration. In CVPR, 2017.

5, 6, 10, 11, 12, 13, 14, 16, 17
[20] Daniel Zoran and Yair Weiss. From learning models of natural image patches to whole image restoration. In ICCV, 2011. 10


