
Supplementary Material for
MonoRUn: Monocular 3D Object Detection by Reconstruction and

Uncertainty Propagation

Hansheng Chen, Yuyao Huang, Wei Tian*, Zhong Gao, Lu Xiong
Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University

hanshengchen97@gmail.com {huangyuyao, tian wei, 1931604, xiong lu}@tongji.edu.cn

As mentioned in the main paper, this supplementary ma-
terial discusses the epistemic uncertainty, end-to-end train-
ing and Monte Carlo scoring in detail. Apart from that, it
also provides the complete evaluation results on the official
KITTI benchmark, including precision-recall plots.

1. Details on Epistemic Uncertainty

For the estimation of epistemic uncertainty, we adopt the
Monte Carlo dropout approach described in [2]. By sam-
pling the reconstruction network, we can estimate the epis-
temic uncertainty of object coordinates xOC. The predictive
mean and variance are approximated by:

E[xOC] ≈ xOC =
1

NMC

NMC∑
i

xOC
i , (1)

Var[xOC] ≈ 1

NMC − 1

NMC∑
i

(xOC
i − xOC)2, (2)

where xOC
i is the output of the i-th sampled network, NMC

is the number of Monte Carlo samples (set to 50).
Next, we need to transform the variances of 3D object

coordinates into the variances of 2D reprojected coordi-
nates. Strict 3D-2D variance projection requires knowing
the object pose in advance, which is unavailable before the
PnP module. Thus, we use the following approximation:Var[unorm

rp ] ≈ 1

2
(Var[xOC] + Var[zOC]),

Var[vnorm
rp ] ≈ Var[yOC],

(3a)

(3b)

where unorm
rp , vnorm

rp are the normalized reprojected coordi-
nates (invariant to depth). Note that this approximation does
not take object orientation into consideration, thus Eq. 3a
simply averages the horizontal variances.

*Corresponding author: Wei Tian.

Finally, the reconstruction module outputs the combined
uncertainty of reprojected 2D coordinates:

σ2
unorm

rp ,comb ≈
1

NMC

NMC∑
i

σ2
unorm

rp ,i +Var[unorm
rp ],

σ2
vnorm

rp ,comb ≈
1

NMC

NMC∑
i

σ2
vnorm

rp ,i +Var[vnorm
rp ],

(4a)

(4b)

where σ2
unorm

rp ,i, σ
2
vnorm

rp ,i is aleatoric uncertainty predicted by
the i-th sampled network. It is to be observed that all the
2D variances above are in the normalized scale. The ac-
tual variances should be further multiplied by a scale factor
(f/tz)

2, where f is camera focal length in pixels and tz is
the z-component of object pose. Since tz is unknown be-
forehand, we only apply this factor to the final pose covari-
ance as a correction.

2. Details on End-to-End Training

End-to-end training is only investigated in the ablation
studies, and is not included in our final training setup. Nev-
ertheless, here we elaborate on the details of differentiable
PnP and end-to-end training loss.

2.1. Back-Propagating the Uncertainty-Driven PnP

Generally, we follow the approach in BPnP [1], with the
code completely re-implemented for higher efficiency and
uncertainty awareness. The details are as follows.

Differentiating the PnP Algorithm The derivative of the
PnP result p∗ is as follows:

∂p∗

∂(·)T = −H−1
∂JTrall

∂(·)T

∣∣∣
p∗
, (5)

where (·) stands for PnP inputs xOC and σ.

1



Proof. Recall the MLE of object pose:

p∗ = argmin
p

1

2

∑
(u,v)∈RoI

rT
(u,v)Σ

−1
(u,v)r(u,v)

= argmin
p

1

2
rT

allrall. (6)

The gradient of the NLL function (
1

2
rT

allrall) w.r.t. p is as
follows:

g = JTrall (7)

with J =
∂rall

∂pT . When the optimization (Eq. 6) converges

to p∗, the gradient always satisfies

gp∗ = 0. (8)

Therefore, the total derivative of g w.r.t. any PnP input
equals zero:

Dgp∗

D(·)T =
∂gp∗

∂p∗T
∂p∗

∂(·)T +
∂gp∗

∂(·)T = 0, (9)

which implies that

∂p∗

∂(·)T = −
(
∂gp∗

∂p∗T

)−1
∂gp∗

∂(·)T = −H−1
∂JTrall

∂(·)T

∣∣∣
p∗
. (10)

Implementation Details The PnP forward process is im-
plemented with Ceres Solver on CPU, while the backward
process is implemented with the Autograd package of Py-
Torch on GPU. With our efficient implementation, the back-
ward overhead of computing the exact second derivatives is
negligible for training.

2.2. End-to-End Training Loss

Leveraging the differentiable PnP, we apply smooth L1
loss on the Euclidean errors of estimated translation vector
t∗ and yaw angle β∗:

Ltrans = LSmoothL1(‖t∗ − tgt‖), (11)

Lrot = LSmoothL1

(∥∥∥∥[cosβ∗sinβ∗

]
−
[
cosβgt
sinβgt

]∥∥∥∥). (12)

The overall loss for end-to-end training is:

Le2e =L2D + Ldim + Lscore + λLcalib

+ Ltrans + Lrot + LNOC,
(13)

where the reprojection loss is replaced by translation and
rotation losses, and the NOC loss is added as regularization.

3. Details on Monte Carlo Scoring
By sampling pi from the distribution N (p∗,Σp∗), the

3D localization score can be computed using Monte Carlo
integration:

c3DL =
1

NMC

NMC∑
i=1

f

(
IoU3D

([
p∗

d

]
,

[
pi

d

]))
, (14)

where vectors in the form
[
p d

]T
represent 3D boxes

used for computing 3D IoU; f(·) is technically a step func-
tion with a hard IoU threshold, which is 1 for IoU3D ≥
IoUthreshold and 0 otherwise. In practice, we use the clamped
linear function:

f(IoU3D) = max(0,min(1, 2IoU3D − 0.5)). (15)

Table 1 illustrates the performance of Monte Carlo and
MLP scoring methods, along with the baseline of using only
2D detection score. We observe that, although Monte Carlo
scoring proves effective compared to the baseline, its per-
formance is still much lower than the MLP scoring network.
This validates that fusing both pose uncertainty and network
feature can produce a more reliable confidence score.

Scoring Method mAP

2D score only 25.40
Monte Carlo 28.19
MLP 31.47

Table 1. Comparison between different scoring methods, based on
the evaluation results on KITTI validation set.

4. Complete Evaluation Results on the Official
KITTI Benchmark

The official KITTI-Object benchmark consists of four
tasks (2D detection, orientation similarity, 3D detection,

Benchmark Easy Mod. Hard

Car (2D det.) 95.48 87.91 78.10
Car (orientation) 95.44 87.64 77.75
Car (3D det.) 19.65 12.30 10.58
Car (BEV det.) 27.94 17.34 15.24

Ped. (2D det.) 73.05 56.40 51.40
Ped. (orientation) 63.28 47.82 43.23
Ped. (3D det.) 10.88 6.78 5.83
Ped. (BEV det.) 11.70 7.59 6.34

Cyclist (2D det.) 67.47 49.13 43.41
Cyclist (orientation) 49.04 34.36 30.22
Cyclist (3D det.) 1.01 0.61 0.48
Cyclist (BEV det.) 1.14 0.73 0.66

Table 2. With LiDAR supervision.

2



Benchmark Easy Mod. Hard

Car (2D det.) 95.65 87.76 80.12
Car (orientation) 95.48 87.33 79.51
Car (3D det.) 16.04 10.53 9.11
Car (BEV det.) 24.02 15.98 13.52

Ped. (2D det.) 71.27 55.80 49.47
Ped. (orientation) 60.13 46.00 40.61
Ped. (3D det.) 11.18 6.53 5.73
Ped. (BEV det.) 12.03 7.27 6.20

Cyclist (2D det.) 68.85 50.32 44.36
Cyclist (orientation) 37.29 27.95 25.27
Cyclist (3D det.) 0.69 0.38 0.40
Cyclist (BEV det.) 0.94 0.55 0.42

Table 3. Without LiDAR supervision (Fully self-supervised recon-
struction).

BEV detection) on three classes (Car, Pedestrian, Cyclist).
All metrics are based on the precision-recall curves given
the IoU threshold or rotation threshold. We tested two vari-
ants of our model: with LiDAR supervision and without Li-
DAR supervision. The results are shown in Tables 2 and 3
and Figures 1 to 6.

References
[1] Bo Chen, Alvaro Parra, Jiewei Cao, Nan Li, and Tat-Jun

Chin. End-to-end learnable geometric vision by backpropa-
gating pnp optimization. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2020. 1

[2] Alex Kendall and Yarin Gal. What uncertainties do we need
in bayesian deep learning for computer vision? In Conference
on Neural Information Processing Systems (NIPS), 2017. 1

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Easy

Mod.

Hard

(a) 2D detection.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Easy

Mod.

Hard

(b) Orientation similarity.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Easy

Mod.

Hard

(c) 3D detection.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Easy

Mod.

Hard

(d) BEV detection.
Figure 1. Car, with LiDAR supervision.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Easy

Mod.

Hard

(a) 2D detection.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Easy

Mod.

Hard

(b) Orientation similarity.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Easy

Mod.

Hard

(c) 3D detection.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Easy

Mod.

Hard

(d) BEV detection.
Figure 2. Pedestrian, with LiDAR supervision.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Easy

Mod.

Hard

(a) 2D detection.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Easy

Mod.

Hard

(b) Orientation similarity.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Easy

Mod.

Hard

(c) 3D detection.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Easy

Mod.

Hard

(d) BEV detection.
Figure 3. Cyclist, with LiDAR supervision.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Easy

Mod.

Hard

(a) 2D detection.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Easy

Mod.

Hard

(b) Orientation similarity.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Easy

Mod.

Hard

(c) 3D detection.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Easy

Mod.

Hard

(d) BEV detection.
Figure 4. Car, without LiDAR supervision (Fully self-supervised
reconstruction).

3



0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Easy

Mod.

Hard

(a) 2D detection.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Easy

Mod.

Hard

(b) Orientation similarity.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Easy

Mod.

Hard

(c) 3D detection.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1
P

re
c
is

io
n

Easy

Mod.

Hard

(d) BEV detection.
Figure 5. Pedestrian, without LiDAR supervision (Fully self-
supervised reconstruction).

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Easy

Mod.

Hard

(a) 2D detection.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Easy

Mod.

Hard

(b) Orientation similarity.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Easy

Mod.

Hard

(c) 3D detection.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Easy

Mod.

Hard

(d) BEV detection.
Figure 6. Cyclist, without LiDAR supervision (Fully self-
supervised reconstruction).

4


