Supplementary Material for
MonoRUn: Monocular 3D Object Detection by Reconstruction and
Uncertainty Propagation

Hansheng Chen, Yuyao Huang, Wei Tian; Zhong Gao, Lu Xiong
Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University
hanshengchen97@gmail.com {huangyuyao, tian.wei, 1931604, xiong_lu}@tongji.edu.cn

As mentioned in the main paper, this supplementary ma-
terial discusses the epistemic uncertainty, end-to-end train-
ing and Monte Carlo scoring in detail. Apart from that, it
also provides the complete evaluation results on the official
KITTI benchmark, including precision-recall plots.

1. Details on Epistemic Uncertainty

For the estimation of epistemic uncertainty, we adopt the
Monte Carlo dropout approach described in [2]. By sam-
pling the reconstruction network, we can estimate the epis-
temic uncertainty of object coordinates x°C. The predictive
mean and variance are approximated by:

Nuc
E[XOC] ZXOC (l)
1 Nuc L
Var[x%¢] ~ NMC_IZ(XOC X2 @

where x C is the output of the i-th sampled network, Nyc
is the number of Monte Carlo samples (set to 50).

Next, we need to transform the variances of 3D object
coordinates into the variances of 2D reprojected coordi-
nates. Strict 3D-2D variance projection requires knowing
the object pose in advance, which is unavailable before the
PnP module. Thus, we use the following approximation:

1
Varlup™] & 5 (Var[z%] + Var[7]),  (3a)
Var[vp'™] & Var[y°°], (3b)
where ™, vi™ are the normalized reprojected coordi-

nates (invariant to depth). Note that this approximation does
not take object orientation into consideration, thus Eq. 3a
simply averages the horizontal variances.

*Corresponding author: Wei Tian.

Finally, the reconstruction module outputs the combined
uncertainty of reprojected 2D coordinates:

Nuc
1
2
T yom comb < N E Uum,m. i+ Varfugp™],  (4a)
N,
1 MC

0_2

Unorm comb ~ NMC Z Uvnorln Z + Var[ norm]’ (4b)

where oi?grw, af)‘.%mm is aleatoric uncertainty predicted by
the ¢-th sampled network. It is to be observed that all the
2D variances above are in the normalized scale. The ac-
tual variances should be further multiplied by a scale factor
(f/t.)?, where f is camera focal length in pixels and ¢, is
the z-component of object pose. Since ¢, is unknown be-
forehand, we only apply this factor to the final pose covari-
ance as a correction.

2. Details on End-to-End Training

End-to-end training is only investigated in the ablation
studies, and is not included in our final training setup. Nev-
ertheless, here we elaborate on the details of differentiable
PnP and end-to-end training loss.

2.1. Back-Propagating the Uncertainty-Driven PnP

Generally, we follow the approach in BPnP [ 1], with the
code completely re-implemented for higher efficiency and
uncertainty awareness. The details are as follows.

Differentiating the PnP Algorithm The derivative of the

PnP result p* is as follows:

* T
8pT _ 7H71 oJ I‘;ﬂ ’
8() 8() p*

®)

where (-) stands for PnP inputs x°C and o.



Proof. Recall the MLE of object pose:

* : 1 T —1
b =g} 3ol B,

(u,v)€RoI
I
= argmin oIy Ta. (6)
P

1
The gradient of the NLL function (51‘2111'3111) w.It. p is as
follows:
g=J"ry (7

with J = e,
opT

to p*, the gradient always satisfies

When the optimization (Eq. 6) converges

gp- = 0. (8)

Therefore, the total derivative of g w.r.t. any PnP input
equals zero:

Dgp- _ 0gp- Op* 0gp~
D)™ apTa()T  I()T

=0, 9

which implies that

opt _ (agp* )‘1 o _ gy 109

o0~ \opT) a0yt o0 Iy ¥

O

Implementation Details The PnP forward process is im-
plemented with Ceres Solver on CPU, while the backward
process is implemented with the Autograd package of Py-
Torch on GPU. With our efficient implementation, the back-
ward overhead of computing the exact second derivatives is
negligible for training.

2.2. End-to-End Training Loss
Leveraging the differentiable PnP, we apply smooth L1

loss on the Euclidean errors of estimated translation vector
t* and yaw angle 3*:
Ltrans = LSmoothLl(Ht* - tgt”)v (11)
cos 3| |cos By
)l
The overall loss for end-to-end training is:
Le2e :LZD + Ldim + Lscore + /\Lcalib

+ Ltrans + Lrot + LNOC7

Lrot = LSmoothLl (’

13)

where the reprojection loss is replaced by translation and
rotation losses, and the NOC loss is added as regularization.

3. Details on Monte Carlo Scoring

By sampling p; from the distribution A/ (p*, Yp+), the
3D localization score can be computed using Monte Carlo
integration:

1 Nwc « ]
L= - f(IoU3D ( m : m )) (14)
i=1

where vectors in the form [p d]T represent 3D boxes
used for computing 3D IoU; f(+) is technically a step func-
tion with a hard IoU threshold, which is 1 for JoUsp >
ToUnreshold and 0 otherwise. In practice, we use the clamped
linear function:

fIoUsp) = max(0, min(1, 2IoUsp — 0.5)). (15)

Table 1 illustrates the performance of Monte Carlo and
MLP scoring methods, along with the baseline of using only
2D detection score. We observe that, although Monte Carlo
scoring proves effective compared to the baseline, its per-
formance is still much lower than the MLP scoring network.
This validates that fusing both pose uncertainty and network
feature can produce a more reliable confidence score.

Scoring Method mAP

2D score only 25.40
Monte Carlo 28.19
MLP 31.47

Table 1. Comparison between different scoring methods, based on
the evaluation results on KITTI validation set.

4. Complete Evaluation Results on the Official
KITTI Benchmark

The official KITTI-Object benchmark consists of four
tasks (2D detection, orientation similarity, 3D detection,

Benchmark Easy Mod. Hard
Car (2D det.) 95.48 87.91 78.10
Car (orientation) 95.44 87.64 77.75
Car (3D det.) 19.65 12.30 10.58
Car (BEV det.) 27.94 17.34 15.24
Ped. (2D det.) 73.05 56.40 51.40
Ped. (orientation) 63.28 47.82 43.23
Ped. (3D det.) 10.88 6.78 5.83
Ped. (BEV det.) 11.70 7.59 6.34
Cyclist (2D det.) 67.47 49.13 4341
Cyclist (orientation) 49.04 34.36 30.22
Cyclist (3D det.) 1.01 0.61 0.48
Cyclist (BEV det.) 1.14 0.73 0.66

Table 2. With LiDAR supervision.



Benchmark Easy Mod. Hard
Car (2D det.) 95.65 87.76 80.12
Car (orientation) 95.48 87.33 79.51
Car (3D det.) 16.04 10.53 9.11
Car (BEV det.) 24.02 15.98 13.52
Ped. (2D det.) 71.27 55.80 49.47
Ped. (orientation) 60.13 46.00 40.61
Ped. (3D det.) 11.18 6.53 5.73
Ped. (BEV det.) 12.03 7.27 6.20
Cyclist (2D det.) 68.85 50.32 44.36
Cyclist (orientation) 37.29 27.95 25.27
Cyclist (3D det.) 0.69 0.38 0.40
Cyclist (BEV det.) 0.94 0.55 0.42

Table 3. Without LiDAR supervision (Fully self-supervised recon-
struction).

BEV detection) on three classes (Car, Pedestrian, Cyclist).
All metrics are based on the precision-recall curves given
the IoU threshold or rotation threshold. We tested two vari-
ants of our model: with LiDAR supervision and without Li-
DAR supervision. The results are shown in Tables 2 and 3
and Figures 1 to 6.

References

[1] Bo Chen, Alvaro Parra, Jiewei Cao, Nan Li, and Tat-Jun
Chin. End-to-end learnable geometric vision by backpropa-
gating pnp optimization. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2020. 1

Alex Kendall and Yarin Gal. What uncertainties do we need
in bayesian deep learning for computer vision? In Conference
on Neural Information Processing Systems (NIPS), 2017. 1

(2]

0.8 08
c c
206 206
§ 0.4 § 0.4
Easy Easy
0.2 Mod. 0.2 Mod.
Hard Hard

0 0.2 0.4 0.6 0.8
Recall

(a) 2D detection.

1

0

(b) Orientation similarity.

0.2 0.4 0.6 0.8
Recall

1

Easy [\ Easy

0.8\ Mod. 0.8 Mod.
- Hard - Hard
206 2 0.6
2 @
8 0.4 8 0.4
a a

0.2 0.2

0 0.2 0.4 0.6 0.8
Recall

(c) 3D detection.

1

0

0.2 0.4 0.6 0.8
Recall

(d) BEV detection.

Figure 1. Car, with LiDAR supervision.

1

Precision

0 0.2 0.4 0.6 0.8
Recall

(a) 2D detection.

Precision

Easy
Mod.
Hard

0 0.2 0.4 0.6 0.8 1
Recall

(b) Orientation similarity.

Easy
Mod.
Hard

Precision

0 0.2 0.4 0.6 0.8
Recall

(¢) 3D detection.

1

Easy
Mod.
Hard

Precision

0 0.2 0.4 0.6 0.8 1
Recall

(d) BEV detection.

Figure 2. Pedestrian, with LiDAR supervision.

Precision

0 0.2 0.4 0.6 0.8
Recall

(a) 2D detection.

Precision

Easy
Mod.
Hard

0 0.2 0.4 0.6 0.8 1
Recall

(b) Orientation similarity.

Easy
Mod.
Hard

Precision

N\

0 0.2 0.4 0.6 0.8
Recall

(c¢) 3D detection.

1

Easy
0.8 Mod.
c Hard
2 0.6
9
3
So4
0.2f|
AN
0 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1
Recall
(d) BEV detection.

Figure 3. Cyclist, with LiDAR supervision.

Precision

Easy
Mod.
Hard

0 0.2 0.4 0.6 0.8
Recall

(a) 2D detection.

Precision

Easy
Mod.
Hard

0 0.2 0.4 0.6 0.8 1
Recall

(b) Orientation similarity.

Easy
0.8 Mod.
c Hard
0.6
7]
8
& 0.4
0.2

0 0.2 0.4 0.6 0.8
Recall

(c) 3D detection.

Figure 4. Car, without LiDAR supervision (Fully self-supervised

reconstruction).

1

\ Easy
0.8 Mod.
c Hard
206
2
3
& 0.4
0.2

0 . . .
0 0.2 0.4 0.6 0.8 1
Recall

(d) BEV detection.



0.8 0.8
< c
206 206
@ @
¢ 0.4 g 0.4
o Easy o Easy
0.2 Mod. 0.2 Mod.
Hard Hard
0 ob——— .
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1
Recall Recall
(a) 2D detection. (b) Orientation similarity.
17 1
Easy Easy
0.8 Mod. 0.8 Mod.
= Hard = Hard
206 206
@ @
8 8
£04 L04
0.2 0.2
0 - - - - 0 -
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1
Recall Recall
(c) 3D detection. (d) BEV detection.

Figure 5. Pedestrian, without LiDAR supervision (Fully self-

supervised reconstruction).

Easy
0.8 0.8 Mod.
. - Hard
206 206
k2 ]
2 2
u&_’ 0.4 &’ 0.4
Easy
0.2 Mod. 0.2
Hard
o— ‘ 0 :
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1
Recall Recall
(a) 2D detection. (b) Orientation similarity.
1 1
Easy Easy
0.8 Mod. 0.8 Mod.
- Hard - Hard
206 206
@ ]
8 3
& 0.4 & 0.4
0.2 0.2 L
N N
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1
Recall Recall
(c) 3D detection. (d) BEV detection.

Figure 6. Cyclist, without LiDAR supervision (Fully self-

supervised reconstruction).



