

One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

— Supplementary Material —

Minghao Chen^{1*}, Jianlong Fu², Haibin Ling¹

¹Stony Brook University ²Microsoft Research Asia

{minghao.chen, haibin.ling}@stonybrook.edu, jianf@microsoft.com

Appendix A

In this appendix, we include: (I) proof of the property stated in Section 3.2, (II) the detailed supernet structure and search space.

A-I: Proof of Diversity Score Property

In this section, we show a more detailed formula of the property stated in Section 3.2 and the proof of the property.

Property: Assume that $h_m := (o_{1,m}, \dots, o_{j,m}, \dots, o_{K,m})$ and $h'_m := (o_{1,m}, \dots, o'_{j,m}, \dots, o_{K,m})$ are different only by j th operator. Denote the indexes of operators in h_m and h'_m as $\sigma_1, \sigma_2, \dots, \sigma_K$ and $\sigma'_1, \sigma'_2, \dots, \sigma'_K$. If $S_{i,k}^m < S_{i',k}^m$ for $k = 1, 2, \dots, K$ and $r_i^m > r_{i'}^m$, then we have:

$$Score(h_m) > Score(h'_m), \quad (1)$$

where σ_j and σ'_j equal to i and i' .

Proof: Given the property of matrix determinant and definition of L_m^y , the diversity score of h_m could be expressed as:

$$Score(h_m) = \prod_{i=1}^K r_{\sigma_i}^2 \cdot \det(S_m^y). \quad (2)$$

where S_m^y are the corresponding submatrixs of h_m in S_m .

According to the assumption, we know that $\prod_{i=1}^K r_{\sigma_i}^2 > \prod_{i=1}^K r_{\sigma'_i}^2$. Now, if $\det(S_m^y)$ is greater than $\det(S_m^{y'})$ then the property holds easily. Because h_m and h'_m are only different by the j th operator and S_m is a symmetry matrix, the number of total different entries between S_m^y and $S_m^{y'}$ is less than $2K$. We could construct a series of matrixs $B_i \in \mathbb{R}^{K \times K}, i = 0, 1, 2, \dots, K$ as following:

$$B_i(k, l) = \begin{cases} S_m^y(k, l), & k < i, l = j, \\ S_m^y(k, l), & l < i, k = j, \\ S_m^{y'}(k, l), & \text{Otherwise,} \end{cases} \quad (3)$$

where $B_i(k, l)$ is the entry in row k column l . We then prove the following inequality by induction:

$$\det(B_i) \leq \det(B_{i+1}), i = 0, 1, 2, \dots, K-1. \quad (4)$$

*This work is done when Minghao is an intern at Microsoft.

For $i = 0$, consider matrix A defined as follow:

$$A(k, l) = \begin{cases} \frac{S_m^y(1, j)}{S_m^{y'}(1, j)}, & k = 1, l = j, \\ \frac{S_m^y(j, 1)}{S_m^{y'}(j, 1)}, & l = 1, k = j, \\ 1, & \text{Otherwise.} \end{cases} \quad (5)$$

Given the assumption that $S_{i,k}^m < S_{i',k}^m$ for $k = 1, 2, \dots, K$, we have $S_m^y(1, j) < S_m^{y'}(1, j)$. Then we could get A is a positive define matrix easily using the definition of positive define matrixs. Regarding A and B_0 are both semi-positive define matrix, we have following statement using **Oppenheim's inequality**:

$$\det(A \circ B_0) = \det(B_1) \geq \det(B_0) \prod_i^K A(i, i) = \det(B_0), \quad (6)$$

where $A \circ B_0$ is the **Hadamard product** (element-wise product) of A and B_0 . Besides, B_1 is also a semi-positive define matrix according to **Schur product theorem**.

For $i = 1, 2, \dots, K-1$, it is easy to construct A with similar definition like above and get the statement that $\det(B_i) \leq \det(B_{i+1})$. Now, combining the chain of inequality, we have:

$$\det(S_m^y) = \det(B_{K-1}) \geq \det(B_0) = \det(S_m^{y'}). \quad (7)$$

Using Eq. (2)(7), the property holds easily.

A-II: Supernet Structure and Search Space

In this section we give the detailed supernet strucer and space of the new dimension *Splint Point*.

Input Shape	Operators	Channels	Repeat	Stride
$224^2 \times 3$	3×3 Conv	16	1	2
$112^2 \times 16$	3×3 Depthwise Separable Conv	16	1	2
$56^2 \times 16$	MBCConv / SkipConnect	24	4	2
$28^2 \times 24$	MBCConv / SkipConnect	40	4	2
$14^2 \times 40$	MBCConv / SkipConnect	80	4	1
$14^2 \times 80$	MBCConv / SkipConnect	112	4	2
$7^2 \times 112$	MBCConv / SkipConnect	160	4	1
$7^2 \times 160$	1×1 Conv	960	1	1
$7^2 \times 960$	Global Avg. Pooling	960	1	-
960	1×1 Conv	1,280	1	1
1,280	Fully Connect	1,000	1	-
Split Point		(9, 20, 1)		

Table 1. The structure of the supernet. The "MBCConv" contains 6 inverted bottleneck residual block MBCConv [1] (kernel sizes of $\{3,5,7\}$) with the squeeze and excitation module (expansion rates $\{4,6\}$). The "Repeat" represents the maximum number of repeated blocks in a group. The "Stride" indicates the convolutional stride of the first block in each repeated group. (9, 20, 1) means space starts from 9 to 20 with a step of 1.

Appendix B

In appendix B, we show the detailed evolution algorithm, with the detailed algorithm of K -path evolution search below. Specific steps of Crossover, Mutation are presented in Section 3.4.

Algorithm 1 K-Path Evolution Search

Input:

Shrunk search space $\tilde{\mathcal{S}}$, weights $W_{\tilde{\mathcal{S}}}$, population size P , resources constraints C , number of generation iteration \mathcal{T} , validation dataset D_{val} , training dataset D_{train} , Mutation probability of split point P_s , Mutation probability of layer combination P_m .

Output: The most promising ensemble architecture \mathcal{A}^* .

- 1: $G_{(0)} :=$ Random sample P ensemble architectures $\{\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_P\}$ from $\tilde{\mathcal{S}}$ with constrain C ;
- 2: **while** search step $t \in (0, \mathcal{T})$ **do**
- 3: **while** $\mathcal{A}_i \in G_{(t)}$ **do**
- 4: Recalculate the statistics of BN on D_{train} ;
- 5: Obtain the accuracy of $\Phi(\cdot; \mathcal{A}_i, W_{\tilde{\mathcal{S}}})$ on D_{val} .
- 6: **end while**
- 7: $G_{\text{topk}} :=$ the Top K candidates by accuracy order;
- 8: $G_{\text{crossover}} :=$ Crossover($G_{\text{topk}}, \tilde{\mathcal{S}}, C$);
- 9: $G_{\text{mutation}} :=$ Mutation($G_{\text{topk}}, P_s, P_m, \tilde{\mathcal{S}}, C$);
- 10: $G_{(t+1)} = G_{\text{crossover}} \cup G_{\text{mutation}}$
- 11: **end while**

References

- [1] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In *CVPR*, 2018.