
One-Shot Neural Ensemble Architecture Search by Diversity-Guided
Search Space Shrinking

—— Supplementary Material ——

Minghao Chen1*, Jianlong Fu2, Haibin Ling1

1Stony Brook University 2Microsoft Research Asia
{minghao.chen,haibin.ling}@stonybrook.edu, jianf@microsoft.com

Appendix A

In this appendix, we include: (I) proof of the property stated in Section 3.2, (II) the detailed supernet structure and search
space.

A-I: Proof of Diversity Score Property

In this section, we show a more detailed formula of the property stated in Section 3.2 and the proof of the property.
Property: Assume that hm := (o1,m, · · · , oj,m, · · · , oK,m) and h

′

m := (o1,m, · · · , o
′

j,m, · · · , oK,m) are different only by
jth operator. Denote the indexes of operators in hm and h

′

m as σ1, σ2, · · · , σK and σ
′

1, σ
′

2, · · · , σ
′

K . If Smi,k < Sm
i′ ,k

for
k = 1, 2, · · · ,K and rmi > rm

i′
, then we have:

Score(hm) > Score(h
′

m), (1)

where σj and σ
′

j equal to i and i
′
.

Proof: Given the property of matrix determinant and definition of Lym, the diversity score of hm could be expressed as:

Score(hm) =

K∏
i=1

r2σi
· det(Sym). (2)

where Sym are the corresponding submatrixs of hm in Sm.

According to the assumption, we know that
∏K
i=1 r

2
σi
>

∏K
i=1 r

2
σ
′
i

. Now, if det(Sym) is greater than det(Sy
′

m) then the

property holds easily. Because hm and h
′

m are only different by the jth operator and Sm is a symmetry matrix, the number
of total different entries between Sym and Sy

′

m is less than 2K. We could construct a series of matrixs Bi ∈ RK×K , i =
0, 1, 2, · · · ,K as following:

Bi(k, l) =


Sym(k, l), k < i, l = j,

Sym(k, l), l < i, k = j,

Sy
′

m (k, l), Otherwise,

(3)

where Bi(k, l) is the entry in row k column l. We then prove the following inequality by induction:

det(Bi) ≤ det(Bi+1), i = 0, 1, 2, · · ·K − 1. (4)

*This work is done when Minghao is an intern at Microsoft.

1

For i = 0, consider matrix A defined as follow:

A(k, l) =



Sym(1, j)

Sy
′

m (1, j)
, k = 1, l = j,

Sym(j, 1)

Sy
′

m (j, 1)
, l = 1, k = j,

1, Otherwise.

(5)

Given the assumption that Smi,k < Sm
i′ ,k

for k = 1, 2, · · · ,K, we have Sym(1, j) < Sy
′

m (1, j). Then we could getA is a positive
define matrix easily using the definition of positive define matrixs. Regarding A and B0 are both semi-positive define matrix,
we have following statement using Oppenheim’s inequality:

det(A ◦B0) = det(B1) ≥ det(B0)

K∏
i

A(i, i) = det(B0), (6)

where A ◦ B0 is the Hadamard product (element-wise product) of A and B0. Besides, B1 is also a semi-positive define
matrix according to Schur product theorem.

For i = 1, 2, · · · ,K − 1, it is easy to construct A with similar definition like above and get the statement that det(Bi) ≤
det(Bi+1). Now, combining the chain of inequality, we have:

det(Sym) = det(BK−1) ≥ det(B0) = det(Sy
′

m). (7)

Using Eq. (2)(7), the property holds easily.

A-II: Supernet Structure and Search Space

In this section we give the detailed supernet structer and space of the new dimension Splint Point.

Input Shape Operators Channels Repeat Stride

2242 × 3 3× 3 Conv 16 1 2
1122 × 16 3× 3 Depthwise Separable Conv 16 1 2
562 × 16 MBConv / SkipConnect 24 4 2
282 × 24 MBConv / SkipConnect 40 4 2
142 × 40 MBConv / SkipConnect 80 4 1
142 × 80 MBConv / SkipConnect 112 4 2
72 × 112 MBConv / SkipConnect 160 4 1
72 × 160 1× 1 Conv 960 1 1
72 × 960 Global Avg. Pooling 960 1 -

960 1× 1 Conv 1,280 1 1
1, 280 Fully Connect 1,000 1 -

Split Point (9, 20, 1)

Table 1. The structure of the supernet. The ”MBConv” contains 6 inverted bottleneck residual block MBConv [1] (kernel sizes of {3,5,7})
with the squeeze and excitation module (expansion rates {4,6}). The ”Repeat” represents the maximum number of repeated blocks in a
group. The ”Stride” indicates the convolutional stride of the first block in each repeated group. (9, 20, 1) means space starts from 9 to 20
with a step of 1.

Appendix B
In appendix B, we show the detailed evolution algorithm, with the detailed algorithm of K-path evolution search below.

Specific steps of Crossover,Mutation are presented in Section 3.4.

Algorithm 1 K-Path Evolution Search
Input:

Shrunk search space S̃, weights WS̃ , population size P , resources constraints C, number of generation iteration T ,
validation dataset Dval, training dataset Dtrain, Mutation probability of split point Ps, Mutation probability of layer
combination Pm.

Output: The most promising ensemble architecture A∗.
1: G(0) := Random sample P ensemble architectures {A1,A2, · · · AP } from S̃ with constrain C;
2: while search step t ∈ (0, T) do
3: while Ai ∈ G(t) do
4: Recalculate the statistics of BN on Dtrain;
5: Obtain the accuracy of Φ(·;Ai,WS̃) on Dval.
6: end while
7: Gtopk := the Top K candidates by accuracy order;
8: Gcrossover := Crossover(Gtopk, S̃, C);
9: Gmutation := Mutation(Gtopk, Ps, Pm, S̃, C);

10: G(t+1) = Gcrossover ∪Gmutation

11: end while

References
[1] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and

linear bottlenecks. In CVPR, 2018.

