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Appendix A

In this appendix, we include: (I) proof of the property stated in Section 3.2, (II) the detailed supernet structure and search
space.
A-I: Proof of Diversity Score Property

In this section, we show a more detailed formula of the property stated in Section 3.2 and the proof of the property.

’

Property: Assume that b, == (01,m, " ,0jm, " ,0K,m) and h,, = (01,ms "+ 10y "+ ,0K,m) are different only by
Jen operator. Denote the indexes of operators in h,, and h,, as 01,02, -+ ,0x and 0,04, - ,0,. If ST} < S;Pk for
k=1,2,--- ,Kandr]" > r?‘, then we have:

Score(hy,) > Score(h;n), (1)

where o; and a;- equal to ¢ and i
Proof: Given the property of matrix determinant and definition of LY , the diversity score of h,, could be expressed as:

K
Score(hy,) = Hr?, -det(SY,). 2)
i=1
where SY, are the corresponding submatrixs of A, in Sy,.
According to the assumption, we know that Hfil rZ > Hfil ri,_. Now, if det(SY,) is greater than det(SY,) then the
property holds easily. Because h,, and h;w are only different by the j;;, operator and .S, is a symmetry matrix, the number
' REXK

of total different entries between S¥, and SY, is less than 2K. We could construct a series of matrixs B; € 1=

0,1,2,---, K as following:
SY(k, 1), k<il=j,
B;(k,1) = Sn(k,1), 1 <ik=j (3)
S¥ (k,1), Otherwise,

where B;(k, ) is the entry in row k column [. We then prove the following inequality by induction:

det(Bi) < det(Bi+1),i = 0, 1,2, K —1. (4)

*This work is done when Minghao is an intern at Microsoft.



For 7 = 0, consider matrix A defined as follow:

SY (1,7
i) 1=
Sm (1, 7)
—Jsva
S (5,1)
1, Otherwise.
Given the assumption that 57} < 57", fork =1,2,--- , K, we have SY(1,4) < S,y,; (1, 7). Then we could get A is a positive

define matrix easily using the definition of positive define matrixs. Regarding A and By are both semi-positive define matrix,
we have following statement using Oppenheim’s inequality:

K
det(A o By) = det(By) > det(Bo) | [ A(i, i) = det(By), (6)

where A o By is the Hadamard product (element-wise product) of A and By. Besides, B is also a semi-positive define
matrix according to Schur product theorem.

Fori=1,2,--- K — 1, it is easy to construct A with similar definition like above and get the statement that det(B;) <
det(B;+1). Now, combining the chain of inequality, we have:

’

det(SY) = det(Bg—1) > det(By) = det(SY,). (7

Using Eq. (2)(7), the property holds easily.

A-II: Supernet Structure and Search Space

In this section we give the detailed supernet structer and space of the new dimension Splint Point.

Input Shape Operators Channels Repeat Stride
2242 x 3 3 x 3 Conv 16 1 2
1122 x 16 3 x 3 Depthwise Separable Conv 16 1 2
562 x 16 MBConv / SkipConnect 24 4 2
282 x 24 MBConv / SkipConnect 40 4 2
142 x 40 MBConv / SkipConnect 80 4 1
142 x 80 MBConv / SkipConnect 112 4 2
72 x 112 MBConv / SkipConnect 160 4 1
72 x 160 1 x 1 Conv 960 1 1
72 % 960 Global Avg. Pooling 960 1 -

960 1 x 1 Conv 1,280 1 1
1,280 Fully Connect 1,000 1 -
Split Point 9,20,1)

Table 1. The structure of the supernet. The "MBConv” contains 6 inverted bottleneck residual block MBConv [1] ( kernel sizes of {3,5,7})
with the squeeze and excitation module (expansion rates {4,6}). The “Repeat” represents the maximum number of repeated blocks in a
group. The ”Stride” indicates the convolutional stride of the first block in each repeated group. (9, 20, 1) means space starts from 9 to 20
with a step of 1.



Appendix B

In appendix B, we show the detailed evolution algorithm, with the detailed algorithm of K -path evolution search below.
Specific steps of Crossover, Mutation are presented in Section 3.4.

Algorithm 1 K-Path Evolution Search
Input:
Shrunk search space S , weights W s, population size P, resources constraints C, number of generation iteration 7T,
validation dataset D.,), training dataset Dy,,in, Mutation probability of split point Py, Mutation probability of layer
combination P,,.
Output: The most promising ensemble architecture A*.
1: G (o) := Random sample P ensemble architectures {A;, Az, --- Ap} from S with constrain C;
2: while search step ¢ € (0,7) do
3: while A; € G(t) do
Recalculate the statistics of BN on Dy qin;
Obtain the accuracy of ®(-; A;, W) on Dya.
end while
G1opk := the Top K candidates by accuracy order;
Glrossover := Crossover(Glopk, S, ),
Gmutation := Mutation(Giopk, Ps, P, S,0);
10: G(t+1) = Glerossover Y Gmutation
11: end while
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