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1. Discussion about Weight Parameters

As mentioned in the paper, the loss function provided by

our physical prior committee is

Lcom = λdLDCP + λbLBCP + λcLCLAHE (1)

where LDCP , LBCP , and LCLAHE are dark channel prior

loss, bright channel prior loss, and CLAHE reconstruction

loss, respectively. λd, λb, and λc are trade-off weights.

We can see that the choice for loss weights is not a trivial

task. Currently, we set them as fixed parameters across the

training process. However, it is for sure that different hazy

images have a different emphasis and confidence on phys-

ical priors, and the best weight settings should be varied

based on the input. We had implemented a reinforcement

learning technique [2] to adapt the weights based on the in-

put, but the results do not show significant gain than the

fixed weights, and the learned weights are similar across

different images. We shall remark that the phenomenon

may be due the the limited diversity of our training images.

In the future, we may explore more optimization techniques

for better settings of weight parameters.

2. Details of Lsky

We implement Lsky to avoid artifacts and color distor-

tions caused by physical priors. We first estimate the sky

region of image using the dark channel prior (DCP). For a

restored image J, we calculate its dark channel Jdark by:

Jdark = min
c∈{r,g,b}

( min
y∈Ω(x)

(Jc(y))) (2)

where Jc is the c color channel of J and Ω(x) is a local

patch centered at x. DCP assumes that the intensity of

Jdark is low and tends to be zero, if J is a haze-free im-

age. However, DCP is typically invalid in sky regions, as

pixels in the sky are usually bright and do not have a color

channel with very low intensity. Thus, we assume that if the

dark channel intensity of a pixel is greater than a threshold

λ, it can be approximately treated as a pixel in the sky re-

gion. Then we can get the binary mask for the sky region

by

Msky =

{

1, if Jdark ≥ λ

0, otherwise
(3)

Next, we aim to retain the original values of pixels in the

sky regions as possible. The loss function Lsky is defined

as

Lsky = ‖Msky ⊙ (J − Jo)‖1 (4)

where J and Jo are restored images from the current model

M and the original pre-trained model Mo, respectively.

In practice, λ is set to 150 and the patch size is set to

15×15.

3. Implementation Details of Other Backbones

FFA-Net [11]. In pre-training, the backbone is modified

and trained for 20 epochs by the Adam optimizer, with β1

= 0.9 and β2 = 0.999. The initial learning rate is set to

10−4 and we adopt the same cosine annealing strategy to

adjust the learning rate, as in the original paper [11]. In

fine-tuning, we train the network for 10 epochs, with an

initial learning rate of 10−4 that is decayed by 0.5 for every

two epochs. The trade-off weights in loss function are set

to: λd = 10−3, λb = 0.01, and λc = 2.

GridDehazeNet [10]. In pre-training, the backbone is

modified and trained for 10 epochs by the Adam optimizer,

with β1 = 0.9 and β2 = 0.999. The initial learning rate is set

to 10−3 with a decay rate of 0.5 for every 2 epochs. In fine-

tuning, we train the network for 10 epochs, with an initial

learning rate set to 10−4 that is decayed by 0.5 for every

two epochs. The trade-off weights in the loss function are

set to: λd = 5× 10−3, λb = 0.01, and λc = 1.

4. Additional Ablation Studies

We conduct two more ablation studies on the learning

without forgetting (LwF) loss and the sky region loss, re-

spectively.



(a) w/o LwF Loss (b) w/ LwF Loss

Figure 1: Comparison for LwF Loss.

(a) w/o sky region loss (b) w/ sky region loss

Figure 2: Comparison for sky region loss.

4.1. LwF Loss

LwF loss can be viewed as a regularization term during

the fine-tuning, which prevents the model from over-fitting

to the small-scale training data (of real hazy images). The

visual comparison is presented in Fig. 1. Without LwF loss,

the dehazing result suffers from color distortion and over-

saturation, while the result with LwF loss is of good color

distribution.

4.2. Sky Region Loss

Sky region loss is proposed for the circumstances when

the physical priors fail to handle the sky regions well. As

shown in Fig. 2, the result without sky region loss suffers

from noticeable artifacts in the sky, while the result with

sky region loss is more realistic and visually pleasing.

5. Additional Experimental Results

More Comparison Results. In Figs. 3–11, we compare

more dehazing results of PSD with state-of-the-art dehazing

methods. All the results of PSD are conducted on the MS-

BDN [3] backbone. Hazy images in Figs. 3–8 are picked

from RTTS and HSTS (both are subsets of RESIDE [8]),

and images in Figs. 9–11 are from authors of previous work

[4–6]. We can observe that PSD restores more image details

and generates cleaner results than other methods.

More Results for Other Backbones. We show more

experimental results of PSD upon different backbones to il-

lustrate that PSD is generally applicable. All the images are

picked from URHI and they are excluded from the train-

ing data. As shown in Figs. 12–18, PSD produces sig-

nificant improvements on backbone models and performs

well against the state-of-the-art domain adaptation dehaz-

ing [13]. For simplicity of notation, we use PSD (MSBDN)

to represent the model modified and trained by PSD on the

MSBDN backbone. Similarly, we have PSD (FFA) and

PSD (Grid).
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(a) Hazy (b) NLD [1] (c) AOD-Net [7]

(d) FFA-Net [11] (e) MSBDN [3] (f) SSLD [9]

(g) EPDN [12] (h) DAD [13] (i) PSD

Figure 3: Visual comparison on a real hazy image from RTTS.



(a) Hazy (b) NLD [1] (c) AOD-Net [7]

(d) FFA-Net [11] (e) MSBDN [3] (f) SSLD [9]

(g) EPDN [12] (h) DAD [13] (i) PSD

Figure 4: Visual comparison on a real hazy image from RTTS.



(a) Hazy (b) NLD [1] (c) AOD-Net [7]

(d) FFA-Net [11] (e) MSBDN [3] (f) SSLD [9]

(g) EPDN [12] (h) DAD [13] (i) PSD

Figure 5: Visual comparison on a real hazy image from HSTS.



(a) Hazy (b) NLD [1] (c) AOD-Net [7]

(d) FFA-Net [11] (e) MSBDN [3] (f) SSLD [9]

(g) EPDN [12] (h) DAD [13] (i) PSD

Figure 6: Visual comparison on a real hazy image from HSTS.



(a) Hazy (b) NLD [1] (c) AOD-Net [7]

(d) FFA-Net [11] (e) MSBDN [3] (f) SSLD [9]

(g) EPDN [12] (h) DAD [13] (i) PSD

Figure 7: Visual comparison on a real hazy image from HSTS.



(a) Hazy (b) NLD [1] (c) AOD-Net [7]

(d) FFA-Net [11] (e) MSBDN [3] (f) SSLD [9]

(g) EPDN [12] (h) DAD [13] (i) PSD

Figure 8: Visual comparison on a real hazy image from HSTS.



(a) Hazy (b) NLD [1] (c) AOD-Net [7]

(d) FFA-Net [11] (e) MSBDN [3] (f) SSLD [9]

(g) EPDN [12] (h) DAD [13] (i) PSD

Figure 9: Visual comparison on a real hazy image released from authors of previous work [4–6].



(a) Hazy (b) NLD [1] (c) AOD-Net [7]

(d) FFA-Net [11] (e) MSBDN [3] (f) SSLD [9]

(g) EPDN [12] (h) DAD [13] (i) PSD

Figure 10: Visual comparison on a real hazy image released from authors of previous work [4–6].



(a) Hazy (b) NLD [1] (c) AOD-Net [7]

(d) FFA-Net [11] (e) MSBDN [3] (f) SSLD [9]

(g) EPDN [12] (h) DAD [13] (i) PSD

Figure 11: Visual comparison on a real hazy image released from authors of previous work [4–6].



(a) Hazy (b) FFANet [11] (c) GridDehazeNet [10] (d) MSBDN [3]

(e) DAD [13] (f) PSD (FFA) (g) PSD (Grid) (h) PSD (MSBDN)

Figure 12: Results of using different backbones.

(a) Hazy (b) FFANet [11] (c) GridDehazeNet [10] (d) MSBDN [3]

(e) DAD [13] (f) PSD (FFA) (g) PSD (Grid) (h) PSD (MSBDN)

Figure 13: Results of using different backbones.



(a) Hazy (b) FFANet [11] (c) GridDehazeNet [10] (d) MSBDN [3]

(e) DAD [13] (f) PSD (FFA) (g) PSD (Grid) (h) PSD (MSBDN)

Figure 14: Results of using different backbones.

(a) Hazy (b) FFANet [11] (c) GridDehazeNet [10] (d) MSBDN [3]

(e) DAD [13] (f) PSD (FFA) (g) PSD (Grid) (h) PSD (MSBDN)

Figure 15: Results of using different backbones.

(a) Hazy (b) FFANet [11] (c) GridDehazeNet [10] (d) MSBDN [3]

(e) DAD [13] (f) PSD (FFA) (g) PSD (Grid) (h) PSD (MSBDN)

Figure 16: Results of using different backbones.



(a) Hazy (b) FFANet [11] (c) GridDehazeNet [10] (d) MSBDN [3]

(e) DAD [13] (f) PSD (FFA) (g) PSD (Grid) (h) PSD (MSBDN)

Figure 17: Results of using different backbones.

(a) Hazy (b) FFANet [11] (c) GridDehazeNet [10] (d) MSBDN [3]

(e) DAD [13] (f) PSD (FFA) (g) PSD (Grid) (h) PSD (MSBDN)

Figure 18: Results of using different backbones.


