
Supplement Material : Pareto Self-Supervised Training for Few-Shot Learning

Zhengyu Chen1,2,3, Jixie Ge1,2, Heshen Zhan1,2, Siteng Huang1,2, Donglin Wang1,2∗

1 Machine Intelligence Lab (MiLAB), AI Division, School of Engineering, Westlake University
2 Institute of Advanced Technology, Westlake Institute for Advanced Study

3 College of Computer Science & Technology, Zhejiang University
{chenzhengyu,gejixie,zhanheshen,huangsiteng,wangdonglin}@westlake.edu.cn

A. Proofs and derivations

A.1. Proof of Lemma

Lemma 2:If θ∗π0 achieves the best overall performance,
i.e. minθ

∑M
m=1 Lm(θ) =

∑M
m=1 Lm(θ∗π0), and a bet-

ter performance of main task can be achieved in θ′, i.e.,
L1(θ′) < L1(θ∗π0), we will have ρ(θ′) < ρ(θ∗π0).

Proof : We will have

M∑
m=2

Lm(θ′) >

M∑
m=2

Lm(θ∗π0)

if L1(θ′) < L1(θ∗π0) holds.
We proof it by contradiction. If there is a θ′ satisfying

L1(θ′) < L1(θ∗π0)

and
M∑
m=2

Lm(θ′) <

M∑
m=2

Lm(θ∗π0)

at the same time, we will have

M∑
m=1

Lm(θ′) <

M∑
m=1

Lm(θ∗π0) = minθ

M∑
m=1

Lm(θ).

However, there does not exist any θ′ satisfying

M∑
m=1

Lm(θ′) < minθ

M∑
m=1

Lm(θ)

for minθ
∑M
m=1 Lm(θ) is the minimum of

∑M
m=1 Lm(θ).

A contradiction is found.
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Based on the above results, we have

ρ(θ′) =
L1(θ′)∑M

m=2 Lm(θ′)

<
L1(θ∗π0)∑M
m=2 Lm(θ′)

<
L1(θ∗π0))∑M

m=2 Lm(θ∗π0))

= ρ(θ∗π0).

End the proof.

A.2. Illustrating preference vectors in two-tasks sce-
nario

Let the unit vector u0 be the direction vector of ρ(θ) =
ρ(θ0) in two-task scenario, let u0 = (cosπ0, sinπ0), where
cosπ0 =

e1L(θ∗π0)

‖T2L(θ∗π0)‖2
and Tm = I − emm. The emm is

a single-entry matrix, i.e. the mth element in the mth col-
umn is one and the rest elements are zero, e1 is a single-
entry vector, where the first element is one and rest are zero.
I is an identity matrix. A set of unit preference vectors
{u1,u2, . . . ,uK}, for the preference vector ui can be de-
fined as:

ui = (cosπi, sinπi) ,
s.t. πi = i

K

(
π
2 − π0

)
+ π0, i = 1, . . . ,K.

(1)

Derivation and proof : Instead of dividing the objective
space into two parts by this hyperplane, we divide it by
some vectors in two-dimensional space, for finding some
special vectors in low-dimensional subspace is much easier
than dividing the high-dimensional Euclidean space. We
call these vectors preference vectors and take the three-
dimensional space Oxyz as an example to illustrate our the-
ory. If we want to divide the three-dimensional space Oxyz,
we can first divide Oxyz through the vertical planes perpen-
dicular to xOy, yOz and zOx, which are two-dimensional
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spaces. These vertical planes can be determined by its in-
tersects with xOy, yOz and zOx, and the intersects can be
determined by its direction vectors. Thus, dividing multi-
dimensional space is equivalent to dividing multiple two-
dimensional spaces, and we only need to find the direction
vectors.

Considering problems in two-dimensional space is
equivalent to consider problems in two-task scenario. Re-
mind that, two-task scenario does not mean that we only
have two tasks, we still have M tasks, but we pair the first
task with the others, then we will have M-1 pairs of tasks.
We try to divide the space with these M-1 pairs of tasks. Let
u0 = (cosπ0, sinπ0), we obtain u0 by calculating π0.

As the best overall performance can be achieved in θ∗π0,
we know that the hyperplane also passes θ∗π0. With the so-
lution θ∗π0, we have the optimal loss vector:

L(θ∗π0) = [L1(θ∗π0),L2(θ∗π0), · · · ,LM (θ∗π0)]T.

We first find the projection of the optimal loss vector,
then calculate the direction vector of it as one preference
vector. Take the second dimension as an example. The pro-
jection of the optimal loss vector in the second dimension
is:

L(θ∗π0) = [L1(θ∗π0), 0,L3(θ∗π0), · · · ,LM (θ∗π0)]T,

i.e., T2L(θ∗π0). Cosine of the angle between T2L(θ∗π0) and
e1 is

cosπ0 =
e1T2L(θ∗π0)

‖e1‖2 ‖T2L(θ∗π0)‖2
=

e1L(θ∗π0)

‖T2L(θ∗π0)‖2
.

Remove the subspace which satisfying cos θ > cosπ0
and decompose the remaining part into K parts based on the
angles equally. As a result, we have

πi =
i

K

(π
2
− π0

)
+ π0, i = 1, . . . ,K.

Elements in the set of vectors {u1,u2, . . . ,uK}, i.e. pref-
erence vectors, will satisfy:

ui = (cosπi, sinπi) , i = 1, . . . ,K.

Preference vectors found by this method can evenly di-
vide the space we want. Set a proper K, we can decide the
number of the divided spaces. A small K will cause the ac-
cumulation of residual error, and a bigK will cost too much
time and computing resources.

In our experiments, we mainly use one auxiliary task, so
things are a little different. We don’t need to calculate the
projection of the optimal loss vector, since at this time the
hyperplane is already a straight line in objective space. We
straightly calculate the cosine of the angle between L(θ∗π0)
and e1, i.e.,

cosπ0 =
e1L(θ∗π0)

‖e1‖2 ‖L(θ∗π0)‖2
=

e1L(θ∗π0)

‖L(θ∗π0)‖2

A.3. Further discussion of preference vectors in
multiple tasks

In the above section, we provide an illustration of prefer-
ence vectors in two-task scenario, now we will discuss pref-
erence vectors in another perspective, with another method
of finding preference vectors.

With the hyperplane ρ(θ) = ρ(θ∗π0) we can divide the
objective space into two parts, and we only want the part
which satisfies ρ(θ) ≤ ρ(θ∗π0). Noting that ρ(θ∗π0) is a con-
stant greater than zero, and every objective function is non-
negative, the inequality

ρ(θ) =
L1(θ)∑M

m=2 Lm(θ)
≤ ρ(θ∗π0)

is equivalent to

L1(θ)

ρ(θ∗π0)
≤

M∑
m=2

Lm(θ).

For objective function Lm(θ), there are two possible
situations: 1) L1(θ)

(M−1)ρ(θ∗π0)
≤ Lm(θ); 2) L1(θ)

(M−1)ρ(θ∗π0)
>

Lm(θ), (m = 2, ...,M). We set two index sets:

U = {m| L1(θ)

(M − 1)ρ(θ∗π0)
≤ Lm(θ),m ∈ {2, ...,M}},

V = {m| L1(θ)

(M − 1)ρ(θ∗π0)
> Lm(θ),m ∈ {2, ...,M}}.

Clearly, we have U
⋃
V = {2, ...,M} and U

⋂
V = Ø.

U should be a non-empty subset of {2, ...,M}. If U = Ø,
we will have L1(θ)

ρ(θ∗π0)
>
∑M
m=2 Lm(θ), this goes against our

needs.
Noting that every (U, V ) can determine a partition of

{2, ...,M} and a subspace of the objective space, we can
divide the whole space into several subspaces by setting dif-
ferent (U, V ). Let U run through every non-empty subset of
{2, ...,M} to obtain all pairs of possible (U, V ), then add
(U, V ) as constraints to the optimization problem. We can
formulate the optimization problem as

minθ L(θ) = (L1(θ),L2(θ), · · · ,LM (θ))
T
,

s.t. L1(θ)
ρ(θ∗π0)

≤
∑
u∈U Lu(θ) +

∑
v∈V Lv(θ),

L1(θ)
(M−1)ρ(θ∗π0)

≤ Lm(θ), for m ∈ U,
L1(θ)

(M−1)ρ(θ∗π0)
> Lm(θ), for m ∈ V,

U is a non-empty subset of {2, ...,M},
V = {2, ...,M} − U.

(2)

When U running through every non-empty subset of
{2, ...,M}, the algorithm exploring the whole preference
region.



We take the situation of ρ(θ∗π0) = 1
M−1 as an example to

illustrate the implication of (U, V ). If ρ(θ∗π0) = 1
M−1 , then

m ∈ U means L1(θ) ≤ Lm(θ), i.e. the performance of
task m is worse than the performance of main task, m ∈ V
means L1(θ) > Lm(θ), i.e. the performance of task m
is better than the performance of main task. In conclu-
sion, (U, V ) determines the relative quality between main
task and auxiliary tasks, different qualities mean different
subspaces. Although ρ(θ∗π0) may not be equal to 1

M−1 in
many situations, (U, V ) can still reveal the relative quality
between main task and auxiliary tasks. Thus, we can divide
the objective spaces based on (U, V ).

To find the preference vectors, we only need to solve the
equation group:

L1(θ)

(M − 1)ρ(θ∗π0)
= Lm(θ),m = 2, ...,M.

Take the solutions of the above equation group as preference
vectors, we can divide the objective space. However, we
don’t need to calculate the preference vectors in practice,
make sure that U can run through every non-empty subset
of {2, ...,M} and solve the optimization problem in Eq. 2
is enough.

We can hardly decide the number of preference vectors
in this method. When we just have a few tasks, preference
vectors found by this method can not divide the space to
too many parts, so we’d better choose the two-task scenario
to divide the space. For example, when M = 2, just
like our experiments, {2} has only one non-empty subset,
and the only preference vector is the direction vector
of ρ(θ) = ρ(θ∗π0), so we chose the two-task scenario.
However, when we have plenty of tasks, it’s wise to find
the preference vectors in multiple tasks scenario.

A.4. Derivation of subproblem corresponding to the
preference vectors ui and ui+1

Given the preference vectors ui and ui+1, our next step
is to add constraints to the optimization problem so that
the Pareto solutions we found can lay inside between ui
and ui+1. Still, we take the second dimension as an exam-
ple. Firstly, we get the projection vector, then use cosπ0 =
e1L(θ∗π0)

‖T2L(θ∗π0)‖2
to measure the angle between projection vector

and e1. Let cos(a, b) be the cosine of angle between a and
b. We simply add the constraints:

cos(e1, ui) ≤ cos(π0) ≤ cos(e1, ui + 1)

to our optimization problem. e1 and ui are both unit vec-
tors, so cos(e1, ui) = uie

T
1 , the same as cos(e1, ui+1). We

formulate the problem as:

minθ L(θ) = (L1(θ),L2(θ), · · · ,LM (θ))
T
,

s.t. uie1T ≤ e1L(θ)
‖T2L(θ)‖2

≤ ui+1e1
T .

A.5. Rewriting the optimization problem in Eq. 8
in its dual form

The optimization problem in Eq. 8 is

(dt, αt) = arg mind∈RM ,α∈R α+ 1
2‖d‖

2,

s.t. ∇Lm (θt)
T
d ≤ α, i = 1, . . . ,M.

∇Qk(θt)
T d ≤ α, k ∈ Kε(θt),

∇Rj(θt)T d ≤ α, j ∈ Jε(θt).

(3)

It’s easy to see that Eq. 8 is a convex optimization prob-
lem. To obtain the dual form of this problem, we define a
Lagrangian function as

g(d, α, ωm, βk, γj) = α+
1

2
‖d‖2

+

M∑
m=1

ωm(∇Lm (θt)− α)

+
∑

k∈Kε(θt)

βk(∇Qk (θt)− α)

+
∑

j∈Jε(θt)

γj(∇Rj(θt))− α)

Calculate the partial derivatives and solve the equation
group below:

∂g(d, α, ωm, βk, γj)

∂d
= 0

∂g(d, α, ωm, βk, γj)

∂α
= 0

These two equations are equivalent to:

dt(ωm, βk, γj) +
M∑
m=1

ωm∇Lm(θt)

+
∑

k∈Kε(θt)

βk∇Qk (θt)

+
∑

j∈Jε(θt)

γj∇Rj(θt) = 0

and

1− (

M∑
i=1

ωm +
∑

k∈Kε(θt)

βk +
∑

j∈Jε(θt)

γj) = 0.

It’s easy to see that dt(ωm, βk, γj) is a function of ev-
ery ωm, βk, and γj . We replace the d in Eq. 8
with dt(ωm, βk, γj), and add the constraint

∑M
i=1 ωm +



∑
k∈Kε(θt) βk+

∑
j∈Jε(θt) γj = 1 to the optimization prob-

lem so that we could omit α in Eq. 8. In the end, we formu-
late the optimization problem as

maxωm,βk,γj − 1
2 ‖dt (ωm, βk, γj)‖22 ,

s.t.
∑M
i=1 ωm +

∑
k∈Kε(θt) βk +

∑
j∈Jε(θt) γj = 1,

∀m = 1, . . . ,M,∀k ∈ Kε(θt),∀j ∈ Jε(θt),
ωm ≥ 0, βk ≥ 0, γj ≥ 0.

(4)

A.6. Finding the update direction in Pareto explo-
ration

Assuming that Pareto front is so smooth that every point
on this front can be passed through by several smooth
curves on this front. Let θ∗ be a Pareto solution and θ(x) :
(−ε, ε)→ Rn is a smooth curve on Pareto front which pass
through θ∗ in 0, i.e., θ(0) = θ∗. Our aim is to find some
other Pareto optimal solutions, i.e., find some other points
on the Pareto front. Finding points on the Pareto front di-
rectly is too costly, so we first try to find some approxima-
tions of Pareto solutions, then optimize these approxima-
tions to find the exact Pareto solutions.

We need to calculate the first-order approximation, i.e.,
calculate θ1 = θ(0) + η dθdx (0). As mentioned in Lemma 3,
for every Pareto solution, we have

M∑
m=1

λm∇Lm(θ∗) = 0,

where λ ∈ RM , λm ≥ 0,
∑M
m=1 λi = 1. Thus, for every

point on the curve θ(x), we have

M∑
m=1

λm(θ(x))∇Lm(θ(x)) = 0.

λm will change if θ(x) changes, so we write λm as a func-
tion of θ(x), i.e. λm(θ(x)). Differentiate both sides of the
equation, we will have

H (θ∗) dθdx (0) = ∇L (θ∗)
>
β,

where H (θ∗) =
∑M
m=1 λi∇2Lm (θ∗) and β ∈ RM . We

can obtain dθ
dx (0) by this method.

However, solving a large-scale linear equation group
is very costly in practice. As suggested by Sener and
Koltun[11], we get λ by solving a convex optimization
problem below:

minλ

∥∥∥∑M
m=1 λm∇Lm

(
θ(x)

)∥∥∥
2

s.t. λ ≥ 0,
∑M
m=1 λm = 1

Get λ for ∇L
(
θ(x)

)
and calculate dθ

dx (0), then we will
be able to have the approximation θ1. Optimize θ1, we can
have another Pareto solution.

Notation Description
Id, Jd, Ld No. of users, items and criteria

Rd = [rd,ijl]Id×Jd×Ld User-item-criterion ratings
Ud, Vd, Cd Latent factor matrix

G Core tensor of Tucker
ud,i, 1 ≤ i ≤ Id Latent factor vector of users
Id, Jd, Ld No. of users, items and criteria

Rd = [rd,ijl]Id×Jd×Ld User-item-criterion ratings
Ud, Vd, Cd Latent factor matrix

G Core tensor of Tucker
ud,i, 1 ≤ i ≤ Id Latent factor vector of users

Table 1: Summary of primary notations.

B. Additional implementation details

B.1. Network architectures

Conv-4-64. It consists of 4 convolutional blocks each
implemented with a 3× 3 convolutional layer with 64 chan-
nels followed by BatchNorm + ReLU + 2 × 2 max-pooling
units. In the MiniImageNet experiments for which the im-
age size is 84 × 84 pixels, its output feature map has size
5 × 5 × 64 and is flattened into a final 1600-dimensional
feature vector. For the CIFAR-FS experiments, the image
size is 32× 32 pixels, the output feature map has size 2× 2
× 64 and is flattened into a 256-dimensional feature vector

WRN-28-10. It is a Wide Residual Network with 28
convolutional layers and width factor 10. The 12 resid-
ual layers of this architecture are grouped into 3 residual
blocks (4 residual layers per block). In the MiniImageNet
experiments, the network gets as input images of size 80 ×
80 (rescaled from 84 × 84), and during feature extraction
each residual block downsamples by a factor of 2 the pro-
cessed feature maps. Therefore, the output feature map has
size 10 × 10 × 640 which, after global average pooling,
creates a 640-dimensional feature vector. In the CIFAR-
FS experiments, the input images have size 32 × 32 and
during feature extraction only the last two residual blocks
downsample the processed feature maps. Therefore, in the
CIFAR-FS experiments, the output feature map has size 8
× 8× 640 which again after global average pooling creates
a 640-dimensional feature vector.

Rotation prediction network. This network gets as
input the output feature maps of θ1 and is implemented
as a convnet. More specifically, for the Conv-4-64 and
Conv-4-512 feature extractor architectures (regardless of
the dataset), The network consists of two 3 × 3 convolu-
tional layers with BatchNorm + ReLU units, followed by a
fully connected classification layer. For Conv-4-64, those
two convolutional layers have 128 and 256 feature channels
respectively, while for Conv-4-512 both convolutional lay-
ers have 512 feature channels. In the WRN-28-10 case, The



network consists of a 4-residual-layer residual block that
actually replicates the last (3rd) residual block of WRN-
28-10. This residual block is followed by global average
pooling plus a fully connected classification layer.

Relative patch location network. Given two patches,
The networkgets the concatenation of their feature vectors
extracted with θ1 as input, and forwards it to two fully
connected layers. The single hidden layer, which includes
BatchNorm + ReLU units, has 256, 1024, and 1280 chan-
nels for the Conv-4-64, Conv-4-512, and WRN-28-10 ar-
chitectures respectively.

B.2. Incorporating self-supervision during training

Here we provide more implementation details regard-
ing how we incorporate self-supervision during the training
stage.

Training with rotation prediction self-supervision.
During training for each image of a mini-batch we create
its 4 rotated copies and apply to them the rotation predic-
tion task (i.e., L2 loss). When training the object classifier
with rotation augmentation (e.g., CC-based models) the ob-
ject classification task (i.e., L1 loss) is applied to all rotated
versions of the images. Otherwise, only the upright images
(i.e., the 0 degrees images) are used for the object classifi-
cation task. Note that in the PN-based models, we apply the
rotation task to both the support and the query images of a
training episode, and also we do not use rotation augmenta-
tion for the object classification task.

Training with relative patch location self-supervision.
In this case during training each mini-batch includes two
types of visual data, images and patches. Similar to [2], in
order to create patches, an image is: (1) resized to 96 × 96
pixels (from 84× 84), (2) converted to grayscale with prob-
ability 0.66, and then (3) divided into 9 regions of size 32
× 32 with a 3 × 3 regular grid. From each 32 × 32 sized
region we (4) randomly sample a 24 × 24 patch, and then
(5) normalize the pixels of the patch individually to have
zero mean and unit standard deviation. The object classi-
fication task is applied to the image data of the mini-batch
while the relative patch location task to the patch data of the
mini-batch. Also, as already explained, we also apply an
extra auxiliary object classification loss to the patch data.

B.3. Training routine for training stage

To optimize the training loss we use mini-batch SGD
optimizer with momentum 0.9 and weight decay 5e − 4.
In the MiniImageNet and CIFAR-FS experiments, we train
the models for 60 epochs (each with 1000 SGD iterations),
starting with a learning rate of 0.1 which is decreased by a
factor of 10 every 20 epochs. The mini-batch sizes were
cross-validated on the validation split. For instance, the
models based on CC and Conv-4-64, Conv-4-512, or WRN-
28-10 architectures are trained with mini-batch sizes equal

Shared
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𝜃𝜃s𝒉𝒉

Images

Object 
Classifier

𝜃𝜃𝟏𝟏

Rotation
Classifier

𝜃𝜃𝟐𝟐

Location
Classifier

𝜃𝜃𝟑𝟑

Rotation Task
o0 o90 o180 o270

[Dog]

Few-shot Classification Task

(0,0) (1,0) (0,1) (1,1)
Location Task

Figure 1: The framework used in our Pareto Self-
Supervised Training.

to 128, 128, or 64 respectively. Finally, we perform early
stopping w.r.t. the few-shot classification accuracy on the
validation novel classes (for the CC-based models we use
the 1-shot classification accuracy).

C. More details of Few-Shot Auxiliary Learn-
ing

The main component of all few-shot algorithms is a fea-
ture extractor θsh. As shown in Fig. 1, given an image x, the
feature extractor will output a d-dimensional feature θsh(x)
to different classifier, and the object classifier θ1 will output
the label of image. In this work, we use Cosine Classifiers
(CC) [3] as object classifier.

Cosine Classifiers. In CC few-shot learning, the first
stage trains the feature extractor θsh together with a cosine-
similarity based classifier on the (standard) supervised
task of classifying the base classes. Denoting θ1 =
[w1, . . . ,wNb ] the matrix of the d-dimensional classifica-
tion weight vectors, the normalized score for an input image
x is

Cj
(
θsh(x); θ1

)
= softmaxj

[
γ cos

(
θsh(x),wi

)
i∈Yb

]
(5)

where cos(, ) is the cosine operation between two vectors,
and the scalar γ is the inverse temperature parameter of the
softmax operator, j is the class. The training stage aims
at minimizing w.r.t. θsh and θ1 the negative log-likelihood
loss:

L1

(
θsh, θ1;Db

)
= E

(x,y)∼Db

[
− logCy

(
θsh(x); θ1

)]
(6)

One of the reasons for using the cosine-similarity based
classifier instead of the standard dot-product based one, is
that the former learns feature extractors that reduce intra-
class variations and thus can generalize better on novel
classes. The weight vectors wj in θ1 can be interpreted
as learned prototypes for the base classes, to which input
image features are compared for classification. The sec-
ond stage boils down to computing one representative fea-
ture wj for each new class by simple averaging of asso-



ciated K samples in Dn, and to define the final classifier
C (.; [w1 · · ·wNn ]).

Self-Supervised Auxiliary loss We incorporate self-
supervision to a few-shot learning algorithm by adding
an auxiliary self-supervised loss during its training stage.
More formally, let L2

(
θsh, θ2;Xb

)
be the self-supervised

loss applied to the set Xb = {x | (x, y) ∈ Db} of train-
ing examples in Db deprived of their class labels. The loss
L2

(
θsh, θ2;Xb

)
is a function of the parameters θsh of the

feature extractor and of the parameters θ2 of a network only
dedicated to the self-supervised task. The first training stage
of few-shot auxiliary learning is

min
θsh,θ1,θ2

ω1L1

(
θsh, θ1;Db

)
+ ω2L2

(
θsh, θ2;Xb

)
(7)

where the positive hyperparameter ω1 and ω2 controls the
importance of the classification term and self-supervised
term. The framework of the approach is provided in Fig-
ure 1. For the self-supervised loss, we consider two-task
in the present work: predicting the rotation incurred by an
image [4], which is simple and readily incorporated into a
few-shot learning algorithm; predicting the relative location
of two patches from the same image [1], a seminal task in
self-supervised learning. In a recent study, both methods
have been shown to achieve state-of-the-art results [7].

Image rotations. In this task, the convnet must
recognize among four possible 2D rotations in R =
{0◦, 90◦, 180◦, 270◦} the one applied to an image (see Fig-
ure 1). Specifically, given an image x, we first create its four
rotated copies {xr | r ∈ R}, where xr is the image x ro-
tated by r degrees. Based on the features θsh (xr) extracted
from such a rotated image, the new network θ2 attempts to
predict the rotation class r. Accordingly, the self-supervised
loss

L2(θsh, θ2;X) = E
x∼X

[ ∑
∀r∈R

− log θ2
(
θsh (xr)

)]
(8)

where X is the original training set of non-rotated images
and θ2(·) is the predicted normalized score for rotation r.
Intuitively, in order to do well for this task the model should
reduce the bias towards up-right oriented images, typical for
ImageNet-like datasets, and learn more diverse features to
disentangle classes in the low-data regime.

Relative patch location. Here, we create random pairs
of patches from an image and then predict, among eight
possible positions, the location of the second patch w.r.t. to
the first, e.g., “on the left and above” or “on the right and
below”. Specifically, given an image x, we first divide it
into 9 regions over a 3 ∗ 3 grid and sample a patch within
each region. Lets denote x0 the central image patch, and
x1 · · ·x8 its eight neighbors lexicographically ordered. We
compute the representation of each patch and then generate
patch feature pairs

(
θsh
(
x0
)
, θsh (xp)

)
by concatenation.

Figure 2: Sample images from MultiMNIST. Above each
image are the labels of the upper-left (L) and lower-right
(R) items.

We train a fully-connected network θ3(·, ·) to predict the
position of xp from each pair. The self-supervised loss of
this task is defined as:

L3(θsh, θ3;X) = E
x∼X

[
8∑
p=1

− log θ3
(
θsh
(
x0
)
, θsh (xp)

)]
(9)

where X is a set of images and θ3 is the predicted normal-
ized score for the relative location p.

D. More details of Pareto exploration
D.1. MultiMNIST Setup

We first generated the full MultiMNIST dataset and
picked a subset of 2048 images, downsampled from 28 ×
28 to 14 × 14, as our MultiMNIST Subset example. The
two objectives are the cross entropy losses of classifying
the top-left and bottom-right digits evaluated on all 2048
images. Regarding the classifier, we used a modified net-
work, which has 1500 parameters. Our modified network
starts with a convolutional layer with 10 channels, a 5 × 5
kernel, and a stride of 2 pixels, followed by a 2 × 2 max
pooling layer. Next, the results are fed into a fully con-
nected layer of size 20 × 10 and then sent to two fully con-
nected layers, one for each task. We use ReLU as the non-
linear function in the network. Essentially, this synthetic
example attempts to use a small network to overfit 2048 im-
ages. To generate the Pareto front, we ran BFGS to opti-
mize w1f1 +w2f2 with w1 = 0, 0.01, 0.02, · · · , 1 from the
same random initial guess, which generated a list of 101 so-
lutions x∗0,x

∗
1,x
∗
2, · · · ,x∗101. We then linearly interpolated

f (x∗i ) , i = 0, 1, 2, · · · , 100 and treat the resulting piece-
wise linear spline as the (empirical) Pareto front.

Dataset and Task Description. We followed [10] to
generate MultiMNIST. We first created 36 × 36 images by
placing two 28 × 28 images from MNIST in the upper-left
and lower-right corner with a random shift of up to 2 pix-
els in each direction. The synthesized images were then
resized to 28 × 28 and normalized with a mean of 0.1307
and a standard deviation of 0.3081. No data augmentation



was used for training or testing. Following [8, 9], we built
MultiMNIST from MNIST as shown in the Figure 2. Each
dataset has 60,000 training images and 10,000 test images.
The objectives are the cross entropy losses of classifying the
upper-left and lower right items in the image.

Network Architecture. The backbone network is a
modified LeNet (LeCun et al., 1998). Our network starts
from two convolutional layers with a 5 × 5 kernel and a
stride of 1 pixel. The two layers have 10 and 20 channels
respectively. A fully connected layer of 50 channels ap-
pends the convolutional layers, which is then followed by
two 10-channel fully connected layers, one for each task.
We add a 2 × 2 max pooling layer right after each convo-
lutional layer and use ReLU as the nonlinear function. The
network contains 22,350 trainable parameters.

Training Training We trained all baselines for 30 epochs
of SGD. We used 256 as our mini-batch size and set the
momentum to 0.9. The learning rate started from 0.01 and
decayed with a cosine annealing scheduler.

D.2. Details of exploration on the tangent plane.

Find gradient on the tangent plane at θ∗. Once a
Pareto solution θ∗ is found, we explore its local Pareto set
by spawning new points θt.

Lemma 3 [6]: If θ∗ is Pareto optimal, there will be
a λ ∈ RM such that λm ≥ 0,

∑M
m=1 λi = 1, and∑M

m=1 λm∇Lm(θ∗) = 0.
Proposition [5]: Assuming that L (θ∗) is smooth and

θ∗ is Pareto optimal, consider any smooth curve θ(x) :
(−ε, ε) → Rn in the Pareto set and passing θ∗ at x = 0,
i.e., θ(0) = θ∗, then ∃β ∈ RM such that:

H (θ∗) dθdx (0) = ∇L (θ∗)
>
β (10)

whereH (θ∗) =
∑M
m=1 λi∇2Lm (θ∗).

We use dθ
dx (0) as the update direction and calculate θ1 =

θ(0) + η dθdx (0).
Solving such problem requires an efficient matrix solver.

Similar to [9], we use Krylov subspace iteration methods,
because they are matrix-free and iterative solvers, allow-
ing us to solve the system without complete Hessians and
terminate with intermediate results. In our experiment, we
choose to use the minimal residual method (MINRES), a
classic Krylov subspace method designed for symmetric
indefinite matrices. Note that early termination in MIN-
RES still returns meaningful results because the residual er-
ror is guaranteed to decrease monotonically with iterations.
To summarize, the efficiency of our exploration algorithm
comes from two sources: exploration on the tangent plane
and early termination from a matrix-free, iterative solver.
The time cost of getting one tangent direction is O(kn),
which scales linearly to the network size.
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