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As a number of notations are used throughout the paper, their definitions are summarized in the table below.

Notation Definition
m Number of facial attributes
J Number of clusters
N Number of samples
S ⊂ Rm The semantic space that formed by m attributes
X ⊂ Rd The latent space that learned in GANs
Y ⊂ Rk The space of transformed code
I The image space
Z The set of outcomes from the probability function
D The training dataset
s ∈ S The semantic vector with each entry indicates whether an attribute exists or not
x ∈ X The latent code
x′ ∈ X The latent code of adjacent image
xai ∈ X The anchor of the i-th data
xpi ∈ X The positive sample of the i-th data
xni ∈ X The negative sample of the i-th data
I ∈ I The input image
dX The distance metric for latent space X
ρ(x, x′) The perceptual distance between two latent codes x and x′

K The mechanism for assigning the probability distribution to each latent code
K(x) The probability distribution over x
K(x)(Z) The probability that the obfuscated latent code belongs to the set Z when the original latent code is x
H The mechanism that satisfies dY -privacy
M The mechanism that satisfies ∆ dX -privacy
G The generator in GANs
F : I → X The GAN inversion model that map I to X ∈ Rd
fS : I → S The semantic scoring function can evaluate each image’s facial attribute components
fA : X → S The trained attribute classification model, where X ∈ Rd, and S ∈ Rm
FZ σ-algebra over Z
P(Z) The set of probability function over Z
Dε,k The probability density function for sampling the noise with ε privacy budget in k-dimensional space
∆ The sensitivity
ε The privacy budget
µ The marginal threshold in triplet loss
ω, θ The model weight of decoding and encoding network
α, β The learning rate of decoding and encoding network
Cj The perceptual distance of j-th cluster



In Section 4, we claim that the noise injection mechanism H satisfies dY -privacy and M satisfies ε-PI, both without a
proof. We particularly note that though Fan [11] proposed the original design of H but did not provide the proof. Here, we
first provide a proof that H satisfies dY -privacy. Based on such a result, we provide a formal proof that M satisfies ε-PI.

Lemma 1. If H : Y → P(Y) samples y from a given y0 with the following probability density function (PDF):

Dε,k (y0) (y) = Cε,ke
−ε·dY(y0,y),

then H satisfies dY -privacy, where P(Y) is the set of probability measures over Y , Cε,k = 1
2

(
ε√
π

)k ( k
2−1)!

(k−1)! , and dY is the
k-dimensional Euclidean distance.

Proof. For unifying the symbol usage in Definition 3.3 and Definition 4.3, we substitute y with z ∈ Y , which is the output
sampled from the PDF. After that, we have

Dε,k (y0) (z) = Cε,ke
−ε·dY(y0,z).

The probability of sampling the output z belonging to the set Z at given y0 can be computed as:

H(y)(Z) =

∫
Z

Dε,k (y0) (z) dz,

where y is identical to y0, ∀Z ∈ FY , and FY is a σ-algebra over Y . By triangular inequality, we derive∫
Z

Dε,k (y0) (z) dz =

∫
Z

Cε,ke
−ε·dY(y0,z) dz ≤

∫
Z

Cε,ke
−ε·(dY(y′,z)−dY(y0,y

′)) dz

= eε·dY(y0,y
′)
∫
Z

Cε,ke
−ε·dY(y′,z) dz

= eε·dY(y0,y
′)
∫
Z

Dε,k (y′) (z) dz.

Thus, we can conclude H(y)(Z) ≤ eε·dY(y,y′)H(y′)(Z). According to the definition of metric privacy (Definition 3.3),
H satisfies dY -privacy.

Theorem 1. If H satisfies dY -privacy, then in the case of sensitivity 0 ≤ ∆ ≤ 1, M : X → P(Z) defined as M(x) =
(H ◦ f)(x) = H(f(x)) satisfies ε-PI.

Proof. According to Lemma 1, H has the following properties as it satisfies dY -privacy:

H(y)(Z) ≤ eε·dY(y,y′)H(y′)(Z).

Let y = f(x) and y′ = f(x′) , we have

ln

∣∣∣∣ H(f(x))(Z)

H(f(x′))(Z)

∣∣∣∣ ≤ ε · dY(y, y′).

Next, by substituting H(f(x)) with M(x) and according to the definition of ∆-sensitivity (Definition 3.4), we have

ln

∣∣∣∣M(x)(Z)

M(x′)(Z)

∣∣∣∣ ≤ ε ·∆dX (x, x′).

Therefore, in the case of 0 ≤ ∆ ≤ 1, we can derive:

ln

∣∣∣∣M(x)(Z)

M(x′)(Z)

∣∣∣∣ ≤ ε · dX (x, x′),

which implies that M satisfies ε-PI according to Definition 4.3.

Intuitively, ε-PI refers to that the closer the perceptual distance between the latent codes, the closer the probability of
producing the same obfuscated output, thus making it more difficult for an adversary to distinguish between true codes.
Therefore, if the perceptual distance between the two latent codes increases after the latent codes are transformed by encoding
network f , that is, ∆ > 1, the probability of being distinguished by an adversary increases.



In Theorem 1, we proved that M satisfies ε-PI, when H satisfies dY -privacy and 0 ≤ ∆ ≤ 1. However, as discussed in
Section 4, because of the need to calculate the sensitivity of each cluster ∆j , it is difficult to apply constraints in the training
phase to the encoding network f to achieve 0 ≤ ∆j ≤ 1. (For brevity, the subscript j for the cluster index is omitted below.)

We use the clipping function f̃ : X → Y , which is defined as f̃(x) = f(x′) + g/(‖g‖/C) to bound the sensitivity of the
encoding network f over x , where g = f(x) − f(x′) and x and x′ are adjacent. That is, if ‖f(x) − f(x′)‖ ≥ C, then the
f(x) is clipped to get f̃(x) to ensure that ‖f̃(x)− f(x′)‖ ≤ C, where C = ∆‖x− x′‖. We prove that H combined with the
f̃ satisfies ε-PI in case of configurable sensitivity being set to 0 ≤ ∆ ≤ 0.5.

Theorem 2. Given the range adjacent to latent code x, that is, ‖x− x′‖ ≤ β, if H satisfies dY -privacy and uses the f̃ as a
clipping function, M(x) = (H ◦ f̃)(x) satisfies ε-PI when the configurable sensitivity is set to 0 ≤ ∆ ≤ 0.5.

Proof. We first define the clipped f(x) as f̃(x), which implies that f̃(x)− f(x′) = g/(‖g‖/C) = f(x)−f(x′)·C
‖f(x)−f(x′)‖ .

Here x′ is randomly sampled from those latent codes adjacent to x, to be used as an anchor point to estimate the local
sensitivity around x. We substitute x′ with xa for the anchor point to avoid subsequent semantic conflicts. Thus we have

f̃(x) = f(xa) +
f(x)− f(xa) · C1

‖f(x)− f(xa)‖
, C1 = ∆‖x− xa‖.

For all other latent codes x′ adjacent to x, the clipped value of x′ is given by

f̃(x′) = f(xa) +
f(x′)− f(xa) · C2

‖f(x′)− f(xa)‖
, C2 = ∆‖x′ − xa‖.

Let ĝ1 = f(x)−f(xa)
‖f(x)−f(xa)‖ and ĝ2 = f(x′)−f(xa)

‖f(x′)−f(xa)‖ be normalized unit vectors. Based on triangle inequality, we derive

‖f̃(x)− f̃(x′)‖ = ‖C1 · ĝ1 − C2 · ĝ2‖ ≤ C1‖ĝ1‖+ C2‖ĝ2‖ = C1 + C2 ≤ 2∆β.

Let c = f̃(x) and c′ = f̃(x′), we can quickly follow the proofs of Lemma 1 and Theorem 1 to derive∫
Z

Cε,ke
−ε·dY(c0,z) dz ≤

∫
Z

Cε,ke
−ε·(dY(c′,z)−dY(c0,c

′)) dz

= eε·dY(c0,c
′)
∫
Z

Cε,ke
−ε·dY(c′,z) dz,

and then we have

H(c)(Z) ≤ eε·dY(c,c′)H(c′)(Z).

Since c = f̃(x) and c′ = f̃(x′), we have

H(f̃(x))(Z) ≤ eε·dY(c,c′)H(f̃(x′))(Z).

After substitute H(f̃(x))(Z) with M(x)(Z), and based on dY(c, c′) = ‖f̃(x)− f̃(x′)‖ ≤ 2∆β, we derive

ln

∣∣∣∣M(x)(Z)

M(x′)(Z)

∣∣∣∣ ≤ ε · 2∆β.

Therefore, setting the configurable sensitivity to 0 ≤ ∆ ≤ 0.5, M satisfies ε-PI.


