
Pre-Trained Image Processing Transformer (Supplementary Material)

1. Results on Deblurring
We further evaluate the performance of our model on im-

age deblurring task. We use the GoPro dataset [4] to fine-
tune and test our model. We modify the patch size as 256,
patch dim as 8 and number of features as 9 to achieve a
higher receptive field. Table 1 reported deblurring results,
where + denotes applying self-ensemble technique. As a re-
sult, our IPT achieves the best results among all deblurring
methods. Figure 2 shows the visualization of the resulted
images. As shown in the figure, our pre-trained model can
well achieve the best visual quality among all the previous
models obviously.

2. Architecture of IPT
In the main paper, we propose the image processing

transformer (IPT). Here we show the detailed architecture
of IPT, which consists of heads, body and tails. Each head
has one convolutional layer (with 3 × 3 kernel size, 3 in-
put channels and 64 output channels) and two ResBlock.
Each ResBlock consists of two convolutional layers (with
5×5 kernel size, 64 input channels and 64 output channels)
which involved by a single shortcut. The body has 12 en-
coder layers and 12 decoder layers. The tail of denoising or
deraining is a convolutional layer with 3× 3 kernel size, 64
input channels and 3 output channels. For super-resolution,
the tail consists of one pixelshuffle layer with upsampling
scale 2 and 3 for ×2 and ×3 SR, two pixelshuffle layer with
upsampling scale 2 for ×4 SR.

The whole IPT has 114M parameters and 33G FLOPs,
which have more parameters while fewer FLOPs compared
with traditional CNN models (e.g., EDSR has 43M param-
eters and 99G FLOPs).

3. Impact of Multi-task Training
We train IPT following a multi-task manner and then

fine-tune it on 6 different tasks including ×2,×3,×4 super-
resolution, denoising with noise level 30,50 and deraining.
We find that this training strategy would not harm the per-
formance on these tasks which have been pre-trained on
large scale dataset (ImageNet). In other words, the per-
formance of multi-task training and single-task training re-
mains almost the same. However, when transferring to other

Figure 1. Visualization of cosine similarity of position embed-
dings.

tasks (e.g., Section 4.4 in the main paper), the pre-trained
model using multi-task training is better than that of single-
task training for about 0.3dB, which suggests the multi-task
training would learn universal representation of image pro-
cessing tasks.

4. Visualization of Embeddings

We visualize the learned embeddings of IPT. Figure 1
shows the visualization results of position embeddings. We
find that patches with similar columns or rows have similar
embeddings, which indicate that they learn useful informa-
tion for discovering the position on image processing. We
also test to use fixed embeddings or do not use embeddings,
whose performance are lower than that of using learnable
position embeddings (vary from 0.2dB to 0.3dB for differ-
ent tasks).

Moreover, we visualize the task embeddings in figure 3.
We can find that for ×2 super-resolution task, the simi-
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Figure 2. Image deblurring results on the GoPro dataset. Compared images are derived from [10].

Table 1. Quantitative results on image deblurring. Best and second best results are highlighted and underlined.
Method MSCNN [4] SRN [9] DSD [1] DeblurGANv2 [3] DMPHN [12] LEBMD [2] EDSD [11]
PSNR 30.40 30.25 30.96 29.55 31.36 31.79 29.81
DBGAN [13] MTRNN [6] RADN [7] SAPHN [8] BANET [10] MB2D [5] IPT (Ours) IPT+ (Ours)
31.10 31.13 31.85 32.02 32.44 32.16 32.58 32.91

larity between the embeddings on each position and their
neighbours are higher than ×3 super-resolution, while that
of ×4 super-resolution is the smallest. This results indi-
cates that each patches in ×2 super-resolution can focus
on other patches with farther distance than ×3 and ×4,
since their downsampling scale are smaller and the rela-
tionship between different patches are closer. The similar-
ity of task embedding for deraining in figure 3 (d) shows
that the patches pay more attention on the vertical direc-
tion than horizontal direction, which is reasonable as the
rain is dropped vertically. The similarity of task embedding
for denoising is similar with Gaussian noise, and figure 3
(f) with higher (50) noise level shows higher similarity be-
tween neighbours than figure 3 (e) with 30 noise level. The
visualization results suggests that our task embeddings can
indeed learn some information for different tasks. We also
test to not use task embeddings, which results in signifi-
cant accuracy drop (vary from 0.1dB to 0.5dB for different
tasks).
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