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1. Implementation details of encoder Es
We adopt an image translation framework [7] to train

the encoder Es of the STE module, as shown in Figure
1. To make the Es generalizable to various style images,
we choose the Painter By Numbers (PBN) dataset 1 with a
large style variation as the target domain for image transla-
tion and a synthetic dataset as the source domain. Given a
source domain image xs and a target domain image xt, we
first use a shared Es to extract the structure code for both
the source and target domains denoted as csa and cta respec-
tively. Then the domain specific style encoders Esstyle and
Etstyle generate style codes csb and ctb for the source and tar-
get domains respectively. The encoded structure code and
style code are complementary for each domain. Combining
these two codes, the original images from source and target
domains can be restored by decoders Gs and Gt respec-
tively. In addition, we also combine csa extracted from the
source domain dataset with a randomly sampled style latent
code ctb from the prior distribution q(ctb) ∼ N (0, I). We use
Gt to produce the final output image xs→t. Similarly, we
also combine cta extracted from the target domain dataset
with a randomly sampled style latent code csb from the prior
distribution q(csb) ∼ N (0, I). Gs is used to produce the
final output image xt→s.

Given an image sampled from the data distribution, be-
cause the two parts are complementary, we decode them
back to the original image by minimizing

Lxs

recon = Exs∼p(xs)[||Gs(Es(xs), Esstyle(xs))− xs||1].
(1)

After obtaining the final image xs→t through cross-
domain translation, we input it to the shared structure en-
coder and the specific style encoder, so that the obtained
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latent code can also be reconstructed by minimizing

Lcsa
recon = Ecsa∼p(csa),ctb∼q(c

t
b)
[||Es(Gt(csa, ctb))− csa||1],

(2)

and

Lctb
recon = Ecsa∼p(csa),ctb∼q(c

t
b)
[||Etstyle(Gt(csa, ctb))− ctb||1],

(3)

where q(ctb) is the priorN(0, I). We also use the adversarial
loss to match the distribution of the translated images to the
PBN data distribution as

Lxt

adv = Ecsa∼p(csa),ctb∼q(c
t
b)
[log(1−Dt(xs→t))]+

Ext∼p(xt)[logDt(xt)], (4)

where Dt is a discriminator that tries to distinguish trans-
lated images from painting images. For the other branch,
we follow similar pipeline to design the losses. By min-
imizing these loss functions, the structure code and style
code of the image can be effectively disentangled. The total
training objective is:

min
(Es,Gs,Gt,Ds,Dt)

max
(Ds,Dt)

Ltotal =

Lxs

adv + Lxt

adv + λ1(L
xs

recon + Lxt

recon)+

λ2(L
ctb
recon + L

csa
recon)+ (5)

λ3(L
csb
recon + L

cta
recon),

where λ1, λ2, λ3 are weights for the three losses respec-
tively.

2. Visualize structure maps of images with dif-
ferent styles but the same structure code

We show the structure maps of images with different
styles but the same structure codes in Figure 2. The struc-
ture maps are generated by feeding images of different
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Figure 1. An overview of training process the encoder of STE module.

styles but same structure code into the STE module. It can
be seen from Figure 2 that although the image styles are dif-
ferent, the generated structure maps are very similar, which
further proves that the STE module can ignore the style in-
formation and only extract the structure information.

3. Performance on NYU Depth v2 for semi-
supervised setting

We show the performance of our method under the semi-
supervised setting on NYU Depth v2 in Table 1. It can be
seen from Table 1 that even though our method only uses
500 labeled real data (0.42% of the total dataset) to fine-tune
the domain generalization model, our method outperforms
semi-supervised methods [14] under the same settings, and
even outperforms some fully supervised methods [10, 2].
It is worth noting that Laina et al. [9] use more than 120k
data to train the depth predictor, and we still surpass their
approach on the RMSE.

4. Datasets and Evaluating Metrics
In the following section, we will introduce these datasets

and evaluating metrics used in our experiments in detail.

vKITTI [4] is a photo-realistic synthetic dataset, that con-
tains 21260 image-depth paired generated from five differ-
ent virtual worlds in diverse urban settings and weather con-
ditions. The image resolution of this dataset is 375× 1242.
To train our network, we follow prior works [15, 13], to ran-
domly select 20760 image-depth pairs as our train datasets.

Table 1. Performance on NYU Depth v2 for semi-supervised set-
ting with best results marked in bold.

Method Abs Rel RMSE log 10 δ < 1.25 δ < 1.252 δ < 1.253

Li et al. [10] 0.232 0.821 0.094 0.621 0.886 0.968
Eigen et al. [2] 0.215 0.907 - 0.611 0.887 0.971
Laina et al. [9] 0.127 0.573 0.055 0.811 0.953 0.988
Zhao et al. [14] 0.186 0.710 - 0.712 0.917 0.977
Ours 0.168 0.544 0.069 0.764 0.945 0.984

We downsample all the images to 192 × 640 and data aug-
mentation is conducted including random horizontal flip-
ping with a probability of 0.5, rotation with degrees in
[−5◦, 5◦], and brightness adjustment. Because the ground
truth of KITTI and vKITTI are significantly different, the
maximum depth of the vKITTI dataset is 655.35m, and the
maximum depth value of KITTI is 80m. In order to reduce
the influence of ground truth differences, the depth value of
vKITTI is usually clipped to 80m [15, 8].

SUNCG [12] is an indoor synthetic dataset, which con-
tains 45622 3D houses with various room types. The im-
age size is 480 × 640. Following previous studies [15], we
chose the camera locations, poses, and parameters based on
the distribution of real NYU Depth v2 dataset [11] and re-
tained valid depth maps using the same criteria as Zheng
et al. [15]. 130190 image-depth pairs are downsampled to
192× 256 and used for training.

KITTI [5] is an outdoor real dataset, which is built for
various computer vision tasks for autonomous driving. The
images and depth maps are captured for outdoor scenes
through a LiDAR sensor deployed on a driving vehicle. The
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Figure 2. Visualize structure maps of different styles and the same structure code. (a), (c) and (e) represent the images of different styles
under the same structure code. (b), (d) and (f) are the generated structure maps.

original image resolution is 375× 1241.

NYU Depth v2 [11] is a real indoor dataset, which con-
tains 464 video sequences of indoor scenes captured with
Microsoft Kinect. The dataset is wildly used to evaluate
monocular depth estimation tasks for indoor scenes. Fol-
lowing previous work [15, 8, 6, 1], we use the official 654
aligned image-depth pairs for evaluation. The image reso-
lution is 480× 640.

Evaluating Metrics To quantitatively evaluate the pro-
posed approach, we follow previous work [2, 3, 9, 16].
The evaluation metrics include root mean squared er-
ror (RMSE), mean relative error (REL), Mean log 10 error
(log 10), root mean squared error in log space (RMSElog),
and squared relative error (Squa-Rel), defined as:

• RMSE:
√

1
N

∑N
i=1(di − d̂i)2.

• REL: 1
N

∑N
i=1

|di−d̂i|
d̂i

.

• Mean log 10 error (log 10): 1
N

∑N
i=1 | log10 di −

log10 d̂i|.

• RMSElog:
√

1
N

∑N
i=1(log di − log d̂i)2.

• Squa-Rel: 1
N

∑N
i=1

|di−d̂i|2

d̂i
.

• Accuracy with threshold t: Percentage of pixels whose
depth di satisfies max

(
di

d̂i
, d̂i

di

)
= δ < t, where t ∈

[1.25, 1.252, 1.253] respectively.

di and d̂i are the predicted depth and ground-truth depth at
pixel i respectively. N denotes the number of valid pixels
in the ground-truth depth map.
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