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In the supplemental, we provide additional details on the
2D captioning experiments to explain the choice of 2D in-
put and captioning method that we use (Sec. 1). We also
provide details about the 3d-to-2d projection (Sec. 2), addi-
tional experiments and ablation studies (Sec. 3.1) as well as
qualitative examples (Sec. 3.2) for our 3D experiments.

Figure 1: We compare how each input choice affects the
performance of our 2D captioning experiments with ora-
cle bounding boxes. We show the caption generated using
show and tell (S&T) for the best matching frame selected
from the video recording (A+M, bottom left), rendered an-
notated viewpoint (A+R, bottom right), and from the bird’s
eye view (BEV, top). The BEV provides a good overview of
large objects, but can miss smaller objects such as trashcans
placed underneath desks. The matched frame may not fully
capture the object of interest or provide enough context for
informative captions (see Tab. 1 for quantitative compar-
isons).

Description Generation in 2D (rendered vs matched vs BEV)

VF VP DET CAP C B-4 M R

G A+R - S&T 49.61 11.41 15.64 40.59
G + T A+R O S&T 59.12 12.73 16.61 41.32
G A+M - S&T 11.50 1.63 5.64 13.86
G + T A+M O S&T 16.76 2.01 6.14 14.23
G BEV - S&T 19.94 8.74 14.64 36.53
G + T BEV O S&T 24.21 9.69 14.41 37.38

T + C A+R O TD 51.35 13.09 15.88 43.52
G + T + C A+R O TD 18.10 5.65 11.37 33.10
T + C A+M O TD 12.77 1.58 5.84 15.42
G + T + C A+M O TD 14.00 1.68 5.74 15.41

Table 1: We compare captions for oracle bounding boxes
from annotated viewpoints with rendered (A+R), matched
frames (A+M), and from the birds-eye-view (BEV) on the
ScanRefer [4] validation split. We observe that the ren-
dered frames consistently result in better captions for differ-
ent features (global (G), with target object features (T), and
context object features (C)) and captioning methods (show
and tell (S&T) vs top-down attention (TD)).

1. 2D experiments
1.1. Experimental setup

We conduct a series of experiments in 2D to select the in-
put, captioning method, and visual features for our 2D base-
lines. We implement the models for the 2D experiments
using PyTorch [12] and Detectron2 [16].
Choice of 2D input However, we find that it is often chal-
lenging to find a good matching frame (see Fig. 2), and us-
ing the rendered frames leads to better captioning perfor-
mance (see Tab. 1) despite the rendering artifacts. Fig. 2
shows examples of viewpoints for which it is challenging to
find a good matching frame from the video frames. We sus-
pect that the poor performance of captioning with matched
frames is due to the differences in viewpoints as well as the
extremely limited field of view and motion blur found in
the video frames. In addition, we also check the captioning
performance from a bird-eye-view.
Captioning method For selecting a 2D captioning
method, we experiment with a simple model, show and tell



Figure 2: Examples of difficult to match viewpoints, with the rendered frame for the annotated viewpoint on the left, and
sample frames from the video on the right (selected matched frame shown with dashed borders). The bounding box for the
target object is shown in green. Due to a lack of video recording coverage, it is often impossible to match the exact viewpoint
camera direction and origin. Frames from the video recording suffers from motion blur and have a view that is too close up,
and missing contextual objects.

(S&T [15]), as well as the popular bottom-up and top-down
attention model (TD [2]), and a recent state-of-the-art cap-
tioning method, the meshed-memory transformer (M2 [6]).
The S&T [15] and TD [2] models are similar to the orig-
inal ones, but we replace LSTM [9] with GRU [5] due to
the small size of the ScanRefer [4] dataset. In addition to
the captioning methods above, we also compare our method
against the retrieval baselines (Retr).
Visual features For visual features, we experiment with
using the global visual features for the entire image (G),
features from just the target object (T), and features from
the context objects (C). For object-based features, we rely
on object bounding boxes that are either oracle (O), detected
using a 2D object detector (2DM), or back-projected from
3D (3DV). For our 2D detection, We use Mask R-CNN [8]
with a pre-trained ResNet-101 [7] as our backbone and then
fine-tune it on the ScanRefer training split using rendered
viewpoints.

1.2. Results

In this section we evaluate our instance segmentation and
captioning methods in 2D.

1.2.1 Object detection and instance segmentation

We evaluate the model performance on object detection and
instance segmentation via mAP (mean average precision).
Tab. 2 demonstrates our object detection and instance seg-
mentation results.

1.2.2 Captioning

We evaluate the captions generated for 2D inputs using the
well-established CiDEr [14], BLEU-4 [11], METEOR [3]
and ROUGE [10], abbreviated as C, B-4, M, R, respec-
tively. Tab. 3 shows our captioning experiment results and
Fig. 3 shows examples from the different methods. Note
that the captioning metrics reported here are not compara-
ble to dense captioning metrics reported in the main paper,
as these does not take into account the IoU, and we evaluate
the predicted caption against the ground truth caption for
each respective viewpoint.

Surprisingly, we find that the simple baseline of S&T
outperforms other methods such as the top-down attention
(TD) and meshed-memory transformer (M2) on CiDEr and
METEOR. We suspect that this is partly due to the limited
amount of training data (MSCOCO has 113,287 training
images with five captions each while ScanRefer has only
36,665 descriptions in the train split). Thus, for our 2D-
based baselines in the main paper, we chose to use S&T
with features from the global image and the target object.

2. 3D to 2D projection details

In order to caption the objects in the images using 3D
detected information, we estimate the camera viewpoints
from the 3D bounding boxes and project the 3D bounding
boxes to the rendered single-view images for captioning.
We show the example in Fig. 4.



bath. bed bkshf. cab. chair cntr. curt. desk door others pic. fridg. showr. sink sofa tabl. toil. wind. mAP mAP50 mAP75

DET 12.84 37.66 20.33 16.09 32.39 18.63 16.21 14.47 14.55 20.98 24.72 17.30 18.90 19.73 29.91 28.71 58.22 16.09 23.21 36.01 24.45

SEG 9.74 23.61 1.38 15.25 27.97 7.53 12.82 6.95 11.79 19.66 23.74 18.12 17.91 20.03 25.86 28.23 56.72 9.62 18.72 32.01 19.37

Table 2: 2D object detection (DET) and instance segmentation (SEG) results on the ScanRefer [4] validation split. Reported
values for each object category is the mAP at IoU = 0.50 : .05 : 0.95 (averaged over 10 IoU thresholds). mAP is the class
averaged precision at IoU = 0.50 : .05 : 0.95 (averaged over 10 IoU thresholds). mAP50 is the class averaged precision
at IoU = 0.50. mAP75 is the class averaged precision at IoU = 0.75. We use a Mask R-CNN [8] with a pre-trained
ResNet-101 [7] backbone and fine-tune it on the ScanRefer [4] training split.

Description Generation in 2D (Rendered Viewpoints)

VF VP DET CAP C B-4 M R

G A - Retr 12.07 4.58 11.50 29.37
G A - S&T 49.61 11.41 15.64 40.59

T A O Retr 23.00 7.28 13.44 33.82
T + C A O TD 51.35 13.09 15.88 43.52
T + C A O M2 34.72 7.13 12.69 33.60
T + C A O M2 RL 42.77 9.03 14.34 36.27
G + T A O S&T 59.12 12.73 16.61 41.32
G + T + C A O TD 18.10 5.65 11.37 33.10

T + C A 2DM TD 35.65 11.00 14.30 40.70
T + C A 2DM M2 31.02 7.19 12.28 33.22
T + C A 2DM M2 RL 35.91 8.52 13.53 35.33
G + T A 2DM S&T 41.44 10.95 15.08 39.04
G + T + C A 2DM TD 14.84 4.95 10.85 31.52

G E - S&T 28.52 24.03 18.92 47.76
T + C E 3DV TD 28.25 30.11 18.9 52.14
T + C E 3DV M2 11.44 19.67 14.23 40.42
T + C E 3DV M2 RL 11.83 24.79 15.47 42.69
G + T E 3DV S&T 31.48 25.35 19.09 47.06
G + T + C E 3DV TD 9.66 9.68 13.14 38.38

Table 3: Results of caption generation with rendered view-
points on the ScanRefer [4] validation split. Captioning
metrics are calculated by comparing the generated caption
against the reference caption corresponding to the annotated
viewpoint. VF is the input visual feature which can include
the full image (G), context objects (C), and/or target object
(T). VP is the viewpoint that can be annotated (A), esti-
mated (E), or bird’s eye viewpoint (BEV). DET is the ob-
ject bounding box which can be the ground truth box (O),
Mask R-CNN [8] detected in 2D (2DM) or back-projected
VoteNet [13] detection in 3D (3DV). CAP is the captioning
method which can be cosine retrieval (Retr), Show and tell
(S&T) [15], Top-down attention [2] (TD), Meshed memory
transformer [6] without and with self-critical optimization
respectively (M2) and (M2 RL). Since S&T with global and
target object features (G+T) gives the best CiDEr score, we
select it as the 2D captioning method for the main paper.

Viewpoint estimation from 3D detections. We take sev-
eral heuristics into account to estimate the viewpoints for
the detected 3D boxes. To start with, we compute the av-
erage distance between the target objects and the recorded
viewpoints (1.97 meters). Then, assuming the camera

height as 1.70 meters, we compute the horizontal distance
between the target objects and the viewpoints (0.99 meter).
We randomly pick the points on the circle with the hori-
zontal radius 0.99 meters to the target objects. We repeat
the random selection process until the selected viewpoints
are inside the scenes and the target objects are visible in the
view.
Projecting 3D detections to the estimated views. We de-
rive the camera extrinsics from the estimated viewpoints as
we assume the cameras are always targeting at the center of
the 3D bounding boxes. We keep the camera intrinsic as in
ScanNet. Then, we use these camera parameters to render
the single-view images for the 3D scans. The 3D bounding
boxes are then projected into the image space as the targets
and contexts for generating captions.

3. Additional 3D captioning results
3.1. Additional quantitative analysis

Does our method work on Nr3D? We evaluate our dense
captioning method against the aforementioned baselines on
Nr3D dataset [1], where each 3D object in the scene pos-
sesses several unique utterances. As shown in Tab. 4, our
method outperforms all baselines with a significant margin,
indicating the consistency of improvement on describing
the 3D objects with respect to their appearance and spatial
relationship.
Can the generated captions be used for localization?
We conduct a reverse experiment using the generated cap-
tions to localize objects in the 3D scenes, where we use a
pre-trained ScanRefer [4] with projected multiview features
and point normals. As results shows in Tab. 5, ScanRefer
using the generated descriptions achieves plausible local-
ization accuracy when compared to using the original Scan-
Refer descriptions annotated by human experts. This fur-
ther demonstrates the capability of our method of generat-
ing good descriptions with accurate appearance and spatial
relationship aspects.
Do other 3D features help? We include colors and nor-
mals from the ScanNet meshes to the input point cloud fea-
tures and compare performance against networks trained
without them. As displayed in Tab. 6, our architecture
trained with geometry, multi-view features and normal



Figure 3: Examples of captions generated from 2D rendered frames with oracle bounding boxes (O-left), detected boxes
from Mask-RCNN (2DM-middle), and projected bounding boxes from 3D to 2D (3DV-right). The oracle and Mask-RCNN
predictions are from the annotated viewpoint, while the 3D to 2D projection is using an estimated viewpoint. The bounding
box for the target object is shown in color, while the bounding box for the context objects are in gray. Inaccurate parts of the
caption are underscored.

vectors (xyz+multiview+normal) achieves the best perfor-
mance among all ablations. This matches the feature abla-
tion from ScanRefer [4].

3.2. Additional qualitative analysis

Do graph and attention help with captioning? We com-
pare our model (VoteNet+RG+CAC) with the basic descrip-



Captioning Detection C@0.25IoU B-4@0.25IoU M@0.25IoU R@0.25IoU C@0.5IoU B-4@0.5IoU M@0.5IoU R@0.5IoU mAP@0.5IoU

2D-3D Proj. 2D Mask R-CNN - - - - - - - - -
3D-2D Proj. 2D VoteNet 8.57 8.49 18.83 44.95 3.93 4.21 16.68 41.24 31.83

VoteNetRetr [13] 3D VoteNet 12.60 10.36 20.73 45.53 7.68 7.11 18.83 42.71 31.83
Ours 3D VoteNet 42.21 24.43 25.07 55.88 24.10 15.01 21.01 47.95 32.21

Table 4: Comparison of 3D dense captioning results obtained by Scan2Cap and other baseline methods on Nr3D [1]. 2D-
3D Proj. is not performed on Nr3D due to the lack of viewpoint annotations. We average the scores of the conventional
captioning metrics, e.g. CiDEr [14], with the percentage of the predicted bounding boxes whose IoU with the ground truth
are greater than 0.25 and 0.5. Our method outperforms all baselines with a remarkable margin.

Object Localization Results

unique multiple overall
Evaluation data Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

ScanRefer [4] 76.33 53.51 32.73 21.11 41.19 27.40

Ours 64.54 45.70 26.93 18.14 35.58 24.48

Table 5: Comparison of localization results using a pretrained ScanRefer network [4] on the original ScanRefer validation
split and the generated captions by our dense captioning method, respectively. We measure percentage of predictions whose
IoU with the ground truth boxes are greater than 0.25 and 0.5. We also report scores on “unique” and “multiple” subsets;
unique means that there is only a single object of its class in the scene. Using the generated captions achieves comparable
localization results when compared to those using the annotated descriptions by human experts.

C@0.25IoU B-4@0.25IoU M@0.25IoU R@0.25IoU C@0.5IoU B-4@0.5IoU M@0.5IoU R@0.5IoU mAP@0.5IoU

Ours (xyz) 47.21 29.41 24.89 50.74 32.94 20.63 21.10 41.58 27.45
Ours (xyz+rgb) 49.36 32.88 25.52 54.20 33.41 21.61 22.12 43.61 27.52
Ours (xyz+rgb+normal) 53.73 34.25 26.14 54.95 35.20 22.36 21.44 43.57 29.13
Ours (xyz+multiview) 54.94 32.73 25.90 53.51 36.89 21.77 21.39 42.83 31.43
Ours (xyz+multiview+normal) 56.82 34.18 26.29 55.27 39.08 23.32 21.97 44.78 32.21

Table 6: Ablation study with different features. We compute standard captioning metrics with respect to the percentage of
the predicted bounding box whose IoU with the ground truth are greater than 0.25 and 0.5. The higher the better.

Figure 4: Comparison of generated captions based on 2D-3D and 3D-2D projected detections (2D-3D Proj. and 3D-2D Proj
respectively). In 2D-3D Proj., we first detect object mask in the rendered annotated viewpoints using Mask R-CNN [8] (as
shown in the red box on the left), and generate the caption for the detected object. While in 3D-2D Proj., we first detect object
bounding boxes in 3D using VoteNet [13], then estimate a viewpoint for the detected 3D bounding box, and we back-project
the detected bounding box to 2D. We then generate the caption based on the estimated viewpoint and the back-projected
bounding box (see the yellow box on the right).

tion generation component (VoteNet+GRU) introduced
in Vinyals et al. [15] and our model equipped only with

the context-aware attention captioning (VoteNet+CAC). As
shown in Fig. 5, though all three methods produce good



Figure 5: Ablation study with different components in our method: VoteNet [13] + GRU [5], which is similar to “show and
tell” Vinyals et al. [15]; VoteNet + Context-aware Attention Captioning (CAC); VoteNet + Relational Graph (RG) + Context-
aware Attention Captioning (CAC), namely Scan2Cap. We underscore the inaccurate aspects in the descriptions. Image best
viewed in color.

bounding boxes (IoU>0.5), VoteNet+GRU makes mistakes
when describing the target objects. VoteNet+CAC refers to
the target and the objects nearby in the scene, but still fails
to correctly reveal the relative spatial relationships. In con-
trast, VoteNet+RG+CAC can properly handle the interplay
of describing the target appearance and the relative spatial
relationships in the local environment.
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