
Supplementary Material for
Scene Text Telescope: Text-Focused Scene Image Super-Resolution

A. Implementation Details
A.1. Introduction to Several STR Benchmarks

In this section, we introduce several STR benchmarks,
including IC13 [4], IC15 [3], and CT80 [8]. These datasets
are all available online. Styles of these datasets are quite
different from TextZoom [12] and examples of are shown
in Figure 1. The detailed introductions for each dataset are
as follows:

• IC13 [4] contains 1,095 images for validation. Most
images are clear and easy to identify by humans.

• IC15 [3] contains 1,811 images for validation. The
images in this dataset are captured by Google Glasses
in natural scenes. Many images are noisy, blurred, and
rotated, and some are also of low-resolution by are dif-
ficult to recognizer even for humans.

• CT80 [8] contains 288 images for validation. Most of
the images in this dataset are curved.

We also investigate how many labels in these datasets
have appeared in the training set T of TextZoom. The re-
sults are shown in Table 1. We observe that almost half of
the labels on average have not been seen during training,
which is a great challenge for the super-resolution model.

Dataset IC13 IC15 CT80
Num. of images 1,095 1,811 288

Num. of labels appears in T 601 881 80
Proportion 54.89% 48.65% 44.44%

Table 1. The proportion of labels that have appeared in T .

A.2. Configuration of TBSRN

In this section, we introduce the details of TBSRN. We
first use an STN [2] to rectify the LR image, which is fur-
ther processed by a CNN layer with the configuration (k :
3, s : 1, p : 1, i : 3, o : 64) to obtain a 64-channel feature
map, where k, s, p, i, o denote kernel, stride, padding,
input channel, output channel, respectively. The feature
map goes down to a series of TBSRN blocks, then generates

Figure 1. Examples of IC13, IC15, and CT80.

an SR image by pixel shuffling. The two CNN layers fol-
low the configuration (k : 3, s : 1, p : 1, i : 64, o : 64). The
generated 64-channel feature map is concatenated with two
32-channel PE so C ′ is equal to 128. The head number in
the Self-Attention Module is set to 4. The size of the hidden
layer and output layer in the Position-Wise Feed-Forward
Module is set to 128 and 64, respectively. Therefore, the
shape of the generated feature map will not change after
going through each TBSRN block.

A.3. Configuration of the Pretrained Transformer

We construct the Transformer following other
Transformer-based scene text recognizers [10, 13],
which contain an encoder and a decoder. The configuration
of the encoder is shown in Table 2. Given an input image
of size 32 × 128 × 3, the encoder generates a feature map
of size 8 × 32 × 1024. Sequentially, the feature map is fed
into the decoder. In the decoder, the size of embedding and
the size of PE are both set to 512. The head number in the
Multi-Head Attention Module (MHA) is set to 4. The size
of the hidden layer and the size of the output layer in the
Position-Wise Feed-Forward Module are both set to 1024.
At each time step, the decoder outputs a 63-dimension
vector (10 digits, 26 lowercase letters, 26 uppercase letters,
and a stop symbol). We train the Transformer with an
Adadelta [14] optimizer and set the learning rate to 1.0. We
use a cross-entropy loss to supervise the output text.

A.4. Configuration of VAE

In this section, we introduce the configuration of VAE.
As shown in Figure 2, the VAE mainly consists of two parts:



Layer Configuration Input Size Output Size
CNN (3,1,1,3,64) 32x128x3 32x128x64

Max Pooling (2,2) 32x128x64 16x64x64
CNN (3,1,1,64,128) 16x64x64 16x64x128

Basic Block (1,256) 16x64x128 16x64x256
Max Pooling (2,2) 16x64x256 16x64x256
Basic Block (2,256) 8x32x256 8x32x256
Basic Block (5,512) 8x32x256 8x32x512
Basic Block (3,1024) 8x32x512 8x32x1024

Table 2. Details of the encoder. The configuration of CNN, Max
Pooling, and Basic Block follow the formats (kernel, stride,
padding, input channel, output channel), (kernel, stride),
and (block number, output channel), respectively.

Backbone SRCNN SRResNet TSRN TBSRN (Ours)
FPS 253.41 192.95 40.29 53.14

Table 3. Computational cost of different backbones.

the encoder and the decoder. The image is firstly encoded to
a two-dimension vector through the encoder. Then the two-
dimension vector is transformed to a 784-dimension vector
through a series of linear layers. Finally, the 784-dimension
vector is reshaped to an image of size 28× 28. The training
procedure and the loss functions follow [5].

A.5. Configuration of the Segmentation Model

In this section, we introduce the details of the segmen-
tation model. We propose a variant of U-Net [9] to obtain
rough masks for input text images. The configuration is
shown in Figure 3. We train the segmentation model with
an Adadelta [14] optimizer and set the learning rate to 1.0.
We use a cross-entropy loss to supervise the output mask.

B. Additional Experiments

B.1. Computational Cost

In this section, we investigate the computational cost of
different backbones to perform this super-resolution task. In
the test stage, the Position-Aware Module and the Content-
Aware Module can be removed, which will not bring ad-
ditional time overhead. We calculate FPS for SRCNN [1],
SRResNet [6], TSRN [12], and the proposed TBSRN. All
the FPSs are tested on four TITAN Xp GPUs with a sin-
gle image. The results are shown in Table 3. Even though
SRCNN and SRResNet are faster than our model, the two
backbones do not take sequential information into consider-
ation, which is not suitable for tackling text images. More-
over, the proposed TBSRN is faster than TSRN benefited
from the parallelism of Transformer [11]. Therefore, the
proposed TBSRN shows great superiority in the trade-off
between speed and accuracy.

LPSM LPOS
Accuracy

Easy Medium Hard Average
L1 L1 57.32% 44.08% 34.10% 45.92%
L1 L2 54.97% 40.75% 32.39% 43.48%
L2 L1 59.60% 47.10% 35.30% 48.10%
L2 L2 57.01% 42.45% 33.36% 45.11%

Table 4. Choices between the L1 loss and the L2 loss. We conduct
this experiment on TextZoom. The accuracy is tested on CRNN.

B.2. Choices Between the L1 Loss and the L2 Loss

We conduct several experiments on whether the L1 loss
or the L2 loss is suitable for LPSM and LPOS. The results are
shown in Table 4. We observe that the accuracy achieves
the best when LPSM chooses the L2 loss and LPOS chooses
the L1 loss. Since LPOS is usually a small value (i.e. very
close to 0.001), it is hard for the model to converge if we
choose the L2 loss for LPOS due to the small gradient.

B.3. Results on More Robust Recognizers

In this section, we employ several more robust recogniz-
ers to validate whether the preprocessor also works on these
recognizers. Specifically, we leverage NRTR [10]1, SEED
[7]2, as well as AutoSTR [15]3, all of which are available
on Github in terms of code and pre-trained models. The re-
sults are shown in Table 5. Through the results, we observe
that the Position-Aware Module and Content-Aware Mod-
ule also work on robust recognizers, while the proposed TB-
SRN shows close performance compared with TSRN [12].

C. Visualization
C.1. Visualization for the Effect of LPSM

In Figure 4, we show the visualization of examples
which are generated in the absence of LPSM.

C.2. Visualization for the Position-Aware Module

In this section, we display some visualizations for the
Position-Aware Module. Examples are shown in Figure 5.
For the SR images generated by the model with LPOS, the
boundary between characters is clearer, which is helpful for
the following recognition task.

C.3. Visualization for the Content-Aware Module

In this section, we display some visualizations for the
Content-Aware Module. Examples are shown in Figure
6. For the SR images generated by the model with LCON,
the characters are clearer. Furthermore, the model without
LCON is weak in handling those confusable characters (e.g.
“c” and “o”, “t” and “l”).

1https://github.com/Belval/NRTR
2https://github.com/Pay20Y/SEED
3https://github.com/AutoML-4Paradigm/AutoSTR
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Figure 2. The illustration of VAE. “L”, “R”, “S” denote a linear layer, a ReLU activation layer, a Sigmoid activation layer.

(32,128,3)
C(3,64)
C(64,64)

(32,128,64)

(16,64,128)

(2,8,512)

(8,32,256)

(4,16,512)

M2
C(64,128)
C(128,128)

M2
C(128,256)
C(256,256)

M2
C(256,512)
C(512,512)

M2
C(512,512)
C(512,512)

U

+ (4,16,256) U

+ (8,32,128) U

+
(16,64,64)

U

+ (32,128,2)

C(1024,512)
C(512,256)

C(512,256)
C(256,128)

C(256,128)
C(128,64)

C(128,64)
C(64,2)

Figure 3. The illustration of the segmentation model. C(x, y) means a CNN with input channel = x and output channel = y. kernel,
stride, and padding of CNN are set to 3, 1, and 1. “M2” denotes a Max Pooling layer with kernel = 2 and stride = 2. “U” stands for
a 2 × 2 upsampling operation with the bilinear interpolation. “+” means the concatenation operation. We display the size of each feature
map in the center of each feature map following the format (height, width, channel).

Figure 4. Visualization for effect of LPSM.



Backbone LPOS & LCON
NRTR [10] SEED [7] AutoSTR [15]

Easy Medium Hard Average Easy Medium Hard Average Easy Medium Hard Average
BICUBIC - 65.1% 46.2% 31.8% 48.8% 70.2% 48.1% 34.8% 52.2% 67.8% 46.2% 32.9% 50.1%

SRCNN [1] - 60.0% 39.3% 28.6% 43.7% 71.5% 44.4% 32.3% 50.7% 69.8% 43.6% 31.6% 49.6%
X 59.1% 39.5% 28.6% 43.4% 70.3% 46.4% 33.4% 51.3% 67.9% 44.8% 31.9% 49.4%

SRResNet [6] - 60.1% 48.8% 33.4% 48.3% 70.2% 56.8% 38.5% 56.1% 70.7% 55.1% 37.2% 55.4%
X 63.1% 49.6% 34.8% 50.1% 73.2% 58.0% 39.5% 57.9% 73.3% 57.2% 39.7% 57.8%

TSRN [12] - 64.4% 50.0% 34.9% 50.7% 74.8% 56.3% 39.2% 57.9% 75.2% 56.1% 39.7% 58.1%
X 66.8% 53.6% 37.3% 53.5% 75.8% 60.1% 41.0% 60.0% 75.7% 59.2% 40.2% 59.5%

TBSRN - 65.3% 49.0% 37.2% 51.4% 74.6% 56.2% 41.8% 58.6% 74.6% 55.1% 41.5% 58.1%
X 67.6% 52.2% 37.1% 53.3% 76.8% 58.3% 40.4% 59.7% 76.8% 59.5% 41.8% 60.5%

Table 5. The experimental results of TextZoom on more robust recognizers.

Figure 5. Visualization for the Position-Aware Module.

Figure 6. Visualization for the Content-Aware Module.
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