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Abstract

In the supplemental material, we further conduct more
experiments to demonstrate the effectiveness of proposed
framework. We first show the results of our method and
state-of-the-art unsupervised domain adaptation (UDA)
and semi-supervised learning (SSL) methods on another
synthetic-to-real benchmark. Secondly, more ablation stud-
ies are reported.

1. More Experiments
1.1. Datasets

Synscapes [8] is another photorealistic synthetic dataset
for street scene parsing, which contains 25,000 RGB im-
ages with the resolution of 1440x720. Synscapes is de-
signed to be similar in structure and content to the real-
world Cityscapes dataset [1], and it includes all 19 training
classes for semantic segmentation in Cityscapes. To fur-
ther verify the effectiveness of our method, we use the en-
tire synthetic dataset as another source domain and consider
19 common categories to train our models on Synscapes to
Cityscapes benchmark.

1.2. Implementation Details

Architecture. As the description in the main paper, we
also utilize the DeepLabV?2 with ResNet101 as the segmen-
tation model. In detail, following [6], we also adopt the
multi-level adaptation architecture, which contains two ad-
ditional ASPP modules on the last two convolutional layers,
for fair comparison.

Training Details. During training, all the models are
trained 250,000 iterations and early stopped at 120,000 it-
erations. Iterative rounds R is set to 3 on Synscapes to
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Table 1. Semantic segmentation performance comparison
with the state-of-the-art UDA, SSL and SSDA methods on
Synscapes—Cityscapes. 19-class mloU (%) score are reported
on Cityscapes validation set across 0, 100, 200, 500, 1000, 2975
numbers of labeled target images. “*” denotes our reimplemen-
tation on corresponding numbers of labeled Cityscapes images.
Synscapes images are not introduced for implementing SSL
methods. Best results are highlighted.

Labeled target images
0 100 200 500 1000 2975
AdaptSeg™ [0] |51.3 - - - - -
Advent™ [7] 51.6 - - - - -
Supervised | DeeplabV?2 - 419 47.7 55.5 58.6 65.3

Type Methods

UDA

SSL CutMix™ [3] - 50.8 54.8 61.7 64.8
DST-CBC* [2]| - 48.7 54.1 60.6 63.2 -

SSDA Baseline - 573 58.1 615 639 674
MME* [5] - 56.6 57.1 60.6 63.1 67.9
Ours - 62.0 62.5 65.1 68.2 71.0

Table 2. The results of students trained on single-teacher and
multi-teacher knowledge distillation method. “SL” and “RL” de-
note the teacher model trained on sample-level mixed data and
region-level mixed data, respectively. £ means ensemble opera-
tion of two domain-mixed teachers. All the results are obtained at
first round on GTAS5—Cityscapes.

Model 100 200 500 1000 2975
- Mg 53.9 54.4 584 61.7 65.8
My 55.9 56.2 61.5 64.5 68.1
RL Mk 53.5 56.6 61.7 65.4 68.2
Mg 54.8 57.1 619 653 69.6
E(ML, M%.)|56.2 575 62.3 658 69.1

SL & RL B
My 57.1 58.3 62.6 65.5 69.8

Cityscapes.

1.3. Results on Synscapes to Cityscapes

We show the results of our methods and several state-
of-the-art methods on Synscapes to Cityscapes in Table 1.



Table 3. The detailed results of student model during different rounds through vanilla self-training and our proposed progressive improving

scheme on GTA5—Cityscapes.

Number 100 200

500 1000

Rounds R 1 2 3 4 1 2

4 1 2 3 4 1 2 3 4

Vanilla M5|57.1 56.7 55.1 53.3|58.3 57.9 57.6 56.5/62.5 60.8 59.3 58.4|65.5 62.8 61.6 60.3
Ours M5 |57.1 59.8 61.0 61.2]58.3 60.2 60.3 60.5|62.5 63.7 64.1 64.3/65.5 66.0 66.6 66.0

From Table 1, our approach obtains superior results on all
ratios of labeled data compared with UDA and SSL meth-
ods on Synscapes to Cityscapes. Due to the similarity of
style and content between these two datasets, significant
performance improvement can be obtained by our method.
It is noteworthy that our method achieves 71.0% mloU
when using full data in target domain.

2. More Ablation Studies
2.1. Single-teacher VS. Multi-teacher

In our proposed framework, a good student can be ob-
tained by distilling knowledge from multi domain-mixed
teachers, i.e., teachers trained on sample-level and region-
level mixed data. Here, we compare the results of students
via different knowledge distillation from one single teacher
and multi teachers. We just run first round of our iterative
framework on GTAS [4] to Cityscapes, and the results are
shown in Table 2. From Table 2, one best student model is
achieved by our multi-teacher knowledge distillation frame-
work with a large performance gain at 100 and 200 labeled
images. Thus more accurate pseudo labels generated by stu-
dent model can promote the next round training of teachers.
However, at 500, 1000 and 2975 labled images, the multi-
teacher knowledge distillation has the weak advantage com-
pared with single region-level teacher. We argue that com-
pared with full labeled data, such a lot of labeled images
will provide enough information especially for region-level
data mixing to train a better teacher network. The rest of un-
labeled target images cannot provide extra information for
further improving the student model.

2.2. Vanilla Self-training VS. Progressive Improv-
ing Scheme

Self-training is proposed to address the scarceness of la-
beled training data and successfully used in UDA and SSL
tasks. Vanilla self-training aims to generate pseudo labels
of unlabeled data by one model and leverage them to re-
train this model. We instead use the pseudo labels to train
two stronger teachers. To further demonstrate the advantage
of progressive improving scheme between domain-mixed
teachers and student, we conduct the vanilla self-training
method on the student model obtained at first round on
GTAS to Cityscapes. In experiments, the portion of selected
pseudo labels and the confidence threshold are kept same
and set to 0.5 and 0.9 respectively. Table 3 shows the per-
formance comparison between different self-training strate-

gies. As the number of rounds increases, the performance
of the student model obtained by vanilla self-training de-
ceases. We explain that the initial student cannot be fur-
ther improved through the pseudo labels generated by it-
self in our framework. The key of self-training is by gen-
erating pseudo labels of unlabeled data to further improve
performance of model. However, the initial student model
for self-training in our framework is obtained through the
supervision of soft labels generated by ensemble of multi
teachers on labeled and unlabeled target data, i.e., this su-
pervsion of pseudo- or soft- label mechanism has been used
in the process of obtaining the student model. In addition,
soft label has the more robustness ability than pseudo la-
bel because wrong pixels usually existing in pseudo label.
Thus the vanilla self-training will lead to the performance
drop through the pseudo labels generated by itself. How-
ever, in the progressive improving scheme, we instead use
the pseudo labels for training two domain-mixed teachers.
Due to accurately labeled ground truths in source domain
images, the wrong pixels in pseudo labels has less impact
after two kinds of data mixing methods.
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