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In this supplementary material, we: (a) present further de-
tails of our experimental settings for better reproducibility,
(b) provide additional quantitative results for more compre-
hensive analysis, and (c) show additional qualitative results
to provide a better understanding of our shot contrastive
learning approach (ShotCoL).

1. Experiment Details
We used PyTorch [6] and Tesla V100 GPUs for all our
experiments. For contrastive learning, we used 8 GPUs
with the PyTorch module DistributedDataParallel. Below,
we provide the network parameters, hyper-parameters and
training details for the experiments on each dataset.

1.1. MovieNet Dataset

This section corresponds to §4.2.2 in the main paper.

1.1.1 Training Details
a. Contrastive Learning: Recall that we used ResNet-50
[2] with the first layer modified to take 9 input channels as
our visual encoder. The weights of the query encoder θq
were randomly initialized. The weights of the key encoder
θk were initialized to the same values as θq . The query en-
coder was trained using SGD with a mini-batch size of 256,
momentum of 0.9, and weight decay of 0.0001. The initial
learning rate of 0.03 was dropped twice each time by 10×.

b. Supervised Learning: For training the multi-layer
perceptron (MLP) for the scene boundary detection task on
the MovieNet [3] dataset, we used dropout value of 0.9,
batch size of 1024, maximum epoch number of 200 and
SGD with a fixed learning rate of 0.1.

1.1.2 Additional Results

a. Visual Modality: We present the top 1 accuracy, top 5
accuracy and loss curves during contrastive training in Fig-
ure 1. There are two types of weight initialization methods

*Equal contribution.

Figure 1: Training curves of contrastive learning on
MovieNet dataset.

Figure 2: PR-curves of test set in MovieNet dataset.

compared: (i) randomly initialized, and (ii) pre-trained on
ImageNet [1] dataset. Note that if the network was pre-
trained on ImageNet [1] dataset before contrastive learn-
ing, the loss for the first few epochs are relatively low, but
the converged loss is quite close to the randomly initialized
network. This shows that our method does not rely on pre-
trained weights, and is capable of learning from scratch.

We can see that once training performance saturates and
the curves flatten, e.g., at epoch 60, the performance can be
further improved by decaying the learning rate. We decay
the learning rate twice at epochs 60 and 90 for the randomly
initialized network, and at epochs 30 and 60 for the network
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pre-trained on ImageNet.
To provide a more intuitive understanding of the AP re-

sults in Table 2 of the main paper, we show in Figure 2 the
Precision Recall (PR)-curves on MovieNet test set after per-
forming supervised learning on MovieNet training set.

b. Audio Modality: As the video files in the MovieNet
dataset [3] are not yet released, we only had access to the
keyframes and the pre-computed audio features for each
shot in the dataset. Concatenating our 1 keyframe-based
visual shot-features with the provided pre-computed audio
shot-features for scene boundary detection resulted in only
marginal AP improvement from 52.34 to 52.47. This is in
contrast to our results on the AdCuepoints dataset where in-
corporating learned audio features along with the learned
visual features resulted in substantive AP improvement (see
Table 5 of the main paper). This observation highlights the
importance of using raw audio to learn audio features for
scene boundary detection, and suggests that having access
to raw audio for MovieNet data could further improve the
results of our approach on MovieNet dataset.

1.1.3 Positive Key Selection

During contrastive learning, we used ImageNet space to
select our initial set of positive keys while our encoder
weights were randomly initialized. This allowed us to ex-
ploit the underlying film-production process and select the
right set of neighborhood shots that could offer informative
data augmentation required to learn an effective embedding
space.

Since the computational cost of updating the positive key
set is high, we only updated the positive key set occasionally
(at epochs 20 and 50) during training. Each update can be
viewed as a re-initialization step such that between consec-
utive re-initializations, the argmax operation used to select
positive keys does not impact differentiability.

To further distill the importance of using ImageNet space
in particular for initial positive key set selection, we com-
pare how positive key sets evolve over the course of train-
ing when they are initially selected using: (a) ImageNet
space, versus (b) randomly generated space. Results from
this comparison are given in Table 1, and explained below.

Let Fimgnet denote the feature-space learned using initial
positive key-set obtained from ImageNet space, and Kimgnet
denote the positive key-set at each training epoch. Simi-
larly, use Frandom to denote the feature-space of randomly
initialized encoder, and Krandom as the set of positive keys
at each training epoch. Table A shows the percent overlap
between Kimgnet and Krandom at the end of different epochs.
We make two key observations for the results in Table A.

First, even at epoch 0, the overlap between Kimgnet and
Krandom is already 32.12%, which is significantly larger than

epoch # 0 20 40 60 80 100

overlap % 32.12 70.24 74.42 76.83 75.83 75.11

Table 1: Overlap between Kimgnet and Krandom for different epochs.

random chance (recall that our context is 16 shots long,
making the probability of there being an overlap between
the two sets by random chance to be 1/16 = 6.25%).

Second, as training goes on the overlap between Kimgnet
and Krandom converges to ∼75% by 100 epochs. Using this
learned space for scene boundary detection task based on
one keyframe produces an AP of 51.53% on the MovieNet
dataset.

These observations lead us to believe that our approach
stays stable so long as the feature-space used to find ini-
tial positive key-set is good enough. While ImageNet space
worked out well for us, it is not a crucial requirement for
the stability of our approach. In fact, even the space from
randomly initialized encoder can work for our approach.

1.2. AdCuepoints

This section corresponds to §4.3.2 of the main paper.

1.2.1 Visual Modality

a. Contrastive Learning: For the visual modality of Ad-
Cuepoints dataset, we used the same settings as mentioned
above in § 1.1.1-a.

b. Supervised Learning: For training the MLP for the ad
cuepoint detection task using the visual modality of the Ad-
Cuepoints data, we used a fixed learning rate of 1.0, dropout
value of 0.8, batch size of 1024, and maximum epoch num-
ber of 200.

1.2.2 Audio Modality

a. Contrastive Learning: We used the Wavegram-
Logmel-CNN14 variant of PANNs [4] as our audio encoder.
The architecture of this encoder is similar to VGG [7] but
adapted for audio. The network uses a combined waveg-
ram and log-mel spectrogram representation. The waveg-
ram representation is learned by expanding the time-domain
input waveform to include a third dimension and convolv-
ing over this expanded input. This extra axis is analogous
to frequency and allows the network to learn a joint time-
frequency representation.

During contrastive learning, the weights θq of query en-
coder were randomly initialized, and the weights θk of key
encoder were initialized to the same values as θq . The query
encoder was trained using Adam optimizer with a mini-
batch size of 128, betas of 0.9 and 0.999, epsilon of 1e−08,
and no weight decay. The learning rate was initialized to
0.0005 and decayed using cosine annealing schedule[4].
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Figure 3: Training curves of visual contrastive learning on
AdCuepoints dataset.

Figure 4: Training curves of audio contrastive learning on
AdCuepoints dataset.

Figure 5: PR-curves of test set on AdCuepoints dataset.

b. Supervised Learning: For training the MLP for ad
cuepoint detection task on the AdCuepoints dataset for au-
dio modality, we used a fixed learning rate of 0.01, batch
size of 512, no dropout and maximum epoch number of 100.

1.2.3 Audio-Visual Fusion

In Table 5 of the main paper, we discussed the use of more
sophisticated temporal models, i.e. Bi-LSTM and Trans-
former, to jointly incorporate the visual and audio features.
To do this, we added an FC layer before the temporal mod-
els to map the 4096-dimensional feature vector (audio + vi-

sual) to a more compact 2048-dimensional feature vector.
The features were then passed through the temporal model,
followed by MLP for prediction. For the experiments given
in Table 5 of the main paper, each shot in the sample was
treated as a separate time-step, so the sequence length was
equivalent to the number of shots.

The Bi-LSTM was implemented using the LSTM mod-
ule in PyTorch [6]. It had two layers with 2048 hidden units
and dropout of 0.2 between them. We used Linformer [8] as
our choice of Transformer, which implemented sparse self-
attention with linear complexity, allowing much faster run-
time and lower memory usage. There were 4 attention lay-
ers with 8 attention heads in each layer in the Linformer, and
the projection dimension was 256. We prepended a classifi-
cation token to the beginning of each sequence, and the final
hidden state of this token was used as the sequence repre-
sentation for downstream classification. The input features
were reshaped to batch_size×num_shots×feature_len,
to treat features from adjacent shots in the input as separate
timesteps before being passed to the Linformer. The output
of Linformer is then flattened to batch_size×num_shots·
feature_len to concatenate features from adjacent shots
before being passed to the MLP. The same process is fol-
lowed for the Bi-LSTM in order to treat features from adja-
cent shots as separate timesteps.

1.2.4 Additional Results

The training curves using the visual and audio modalities
for contrastive learning on the AdCuepoints dataset are pre-
sented in Figure 3 and Figure 4 respectively. Note that the
audio network converges notably faster than the visual net-
work, which is consistent with the observations in [9]. In
our case, this effect is exaggerated due to the use of Adam
optimizer when training the audio encoder.

To provide a more intuitive understanding of the AP re-
sults in Table 3, 4, and 5 of the main paper, we show in
Figure 5 the PR-curves on AdCuepoints test set after per-
forming supervised learning on AdCuepoints training set.

Recall that for the visual modality of the MovieNet,
we showed the effectiveness of using our proposed
shot-similarity compared to existing image augmentation
schemes (Table 2, row 8 and row 11 in the main paper).
Along similar lines, we explored the effectiveness of using
existing audio augmentation schemes (e.g. SpecAugment
[5]) compared to our proposed audio-shot similarity for the
AdCuepoints dataset. Contrasting a query shot with its aug-
mented version (using SpecAugment [5]) during contrastive
learning, we can achieve an AP of 50.53 using the 10 shot
setting. Our shot similarity-learning approach instead can
achieve an AP of 53.27. This result further validates appli-
cability of our approach on audio modality.
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Figure 6: Examples in the test set of MovieNet. Labeled scene boundaries are shown with red dashed lines.

Figure 7: Labeled scene boundaries in MovieNet are shown with red dashed lines.

Figure 8: Labeled ad cuepoints in AdCuepoints are shown with red dashed lines.

2. Qualitative Results
2.1. Challenging Examples

To give an intuitive sense of the difficulty level of the scene
boundary detection task, we show in Figure 6 a few ex-
amples of the labeled scene boundaries in the test set of
MovieNet data. As can be observed, even humans can
have difficulty confidently disambiguating whether the shot
boundaries in Figure 6 are scene boundaries or not.

2.2. MovieNet vs AdCuepoints

Recall that ad cuepoints are a special case of scene bound-
aries. To provide more intuition behind this point, in Fig-

ure 7 and Figure 8 we present some representative exam-
ples that demonstrate the differences between the MovieNet
and AdCuepoints datasets. As can be observed in Fig-
ure 7, scene boundaries can be semantically quite close to
each other, and arbitrarily inserting video ads to such scene
boundaries can break the flow of the storyline and interrupt
the viewing experience of the audience.

In contrast, as shown in Figure 8 ad cuepoints are more
distinguishable and isolated from each other. Therefore, in-
serting ads at such points is likely to result in minimal dis-
ruption of the storyline as the scenes before and after the ad
cuepoints are more distinguishable and semantically unre-
lated from each other.
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2.3. Additional Nearest Neighbor Results

Recall that we discussed the effectiveness of our learned
shot representation for the task of scene boundary detec-
tion in §4.1 in the main paper. In Figure 9 of this docu-
ment, we provide some additional results to underscore this
point. We present 5 nearest neighbor shots retrieved for a
query shot using different shot-representations. We com-
pare our learned representation with ImageNet feature [1]
and Places feature [10] to tell whether the 5 nearest neigh-
bor shots are from the same scene or not. As can be ob-
served, while results retrieved using Places and ImageNet
features are visually quite similar to the query-shot, almost
none of them are from the query-shot’s scene (indicated on
the top left of shot-frame). In contrast, results from our
shot-representation are all from the same scene even though
the appearance of the retrieved shots does not exactly match
query shot. This shows that our learned shot-representation
is able to effectively encode the local scene-structure.
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Figure 9: Additional nearest neighbor results. Shot indices are displayed at top-left corners where blue indicates query shot,
green indicates shot from the same scene as query, and red indicates shot from a different scene.
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