
A. More Technical Details

A.1. Pruning Algorithm

Following the routines in previous LTH [31, 9] works,
the algorithm 1 outlines the full iterative magnitude pruning
(IMP) procedure.

Algorithm 1 Iterative Magnitude Pruning (IMP)
1: Set the initial mask to m = 1d1 , with the pre-training θp.
2: repeat
3: Train f(x;m � θp, γp) for t epochs with algorithm AT ,

i.e., ATt (f(x;m� θp, γp))
4: Prune 20% of remaining weights inATt (f(x;m�θp, γp))

and update m accordingly
5: until the sparsity of m reaches the desired sparsity level s
6: Return f(x;m� θp).

A.2. Top-1 Retrieval Accuracy

Here we presents the detailed calculation of top-1 retrieval
accuracy for self-supervised pretraining tasks, including sim-
CLR [10] and MoCo [40]. Given a batch of data with n
samples, {z1, · · · , zn} and {z′1, · · · , z′n} donates the feature
representations from the two branches of simCLR or MoCo
models. zi and z′i are computed from the same input sample
with different data augmentations.

For each zi, we calculate the cosine similarity between
zi and other representations and obtain Di = {d(zi, z)|z ∈
{zj , z′j}nj=1/{zi}}, where d(·, ·) is the cosine similarity mea-
surement. If argmaxzDi = z′i, it suggests the top-1 retrieval
is corrected. In the same way, we perform a similar retrieval
process for z′i and D′i. The concrete calculation formulation
of top-1 retrieval accuracy is depicted as follows:

∑n
i=1[I(argmaxzDi=z′

i)+I(argmaxzD
′
i=zi)]

2×n × 100%, (2)

where I(·) is the indicator function.

B. More Experimental Results

B.1. YOLOv4 Detection Results with Other Metrics

In this section, we report the other two evaluation met-
rics, i.e.,AP50 and AP75, for YOLOv4 detection experi-
ments. As shown in Figure 10, similar observations can
be drawn that there are subnetworks f(x;mP � θp, ·) ca-
pable of transferring to the detection task successfully
(i.e., without performance degradation compared with full
unpruned models) at the (83.22%,89.26%,36.00%) and
(73.79%,48.80%,79.03%) sparsity levels under the AP50

and AP75 metrics for supervised ImageNet, self-supervised
simCLR and MoCo pre-training tasks, respectively.

Figure 10. Performance (AP50 and AP75) of IMP subnetworks
with a range of sparsity from 0.00% to 98.20% on the downstream
tasks. Subnetworks (mVOC2007, θp), θp ∈ {θImg, θsim, θMoCo}
are identified on the detection task with pre-trained weights θp.

B.2. Faster RCNN and SSD Detection Results

In this section, we conduct extra experiments with Faster
RCNN [69] and SSD [53] on Pascal VOC datasets. Specif-
ically, we train detection models for 24K/120K iterations
with a batch size 4/32, a polynomial learning rate (LR) de-
cay (with power 0.9 and initial LR 0.005) / a multi-step
learning rate decay (with initial LR 0.001 amd ×0.1 at the
80K, 110K iterations), SGD optimizer with 0.9 momentum,
and 0.0001/0.0005 weight decay for Faster RCNN/SSD de-
tectors, respectively. As shown in 11, the most different
observation is the winning tickets f(x;mP � θp, ·) found
on the pre-training tasks are almost no longer matching sub-
networks on the detection task with both Faster RCNN and
SSD, which incurs performance degradation compared to un-
pruned dense models f(x; θp, ·). There is an exception that
the subnetworks f(x;mMoCo� θMoCo, ·) successfully trans-
fer to the detection task with Faster RCNN at the 59.04%
sparsity level only under the AP50 metric, and with SSD at
the 83.22%, 86.58%, 83.22% sparsity level under AP, AP50,
AP75 metrics, respectively. Other conclusions are consistent
with the ones of YOLOv4 detector in the main text.



Figure 11. Performance (AP, AP50 and AP75) of IMP subnetworks with a range of sparsity from 0.00% to 98.20% on the downstream tasks.
Subnetworks (mVOC2007, θp), θp ∈ {θImg, θsim, θMoCo} are identified on the detection task with pre-trained weights θp. Results of Faster
RCNN with three independent runs and SSD with one run are presented here.

We notice that detection results of Faster RCNN and SSD
with the simCLR pre-training show inferior and unsatisfac-
tory performances, compared with the reported number in
BYOL [37]. Although BYOL is implemented with Ten-
sorflow (we use Pytorch) and also has an extra residual
block for backbone network, the performance gap is not ne-
glectable. To address this, multiple authors have worked to
carefully tune all hyperparameters (learning rate, batch size,

training iterations), and thoroughly compared implementa-
tion details side-to-side (batch norm, input resolution, etc.).
However, we still cannot close the gap. Hence while our re-
sults on MoCo and ImageNet are very consistent, we cannot
exclude the marginal possibility that simCLR implementa-
tion is specifically sensitive to Pytorch versus Tensorflow
frameworks (unfortunately, not uncommon) for some rea-
son. Therefore, we put Faster RCNN and SSD detection



results with the simCLR pre-training in the appendix as fail-
ure cases, and note that it hardly affects any of our main
observations/conclusions.

B.3. Ablation about Larger Pre-training Models

Figure 12 collects the pre-training task performance of
subnetworks generated from small- and large-scale pre-
trained simCLR models. We observe that heavily com-
pressed, large simCLR models (e.g., ResNet-50) obtain su-
perior performance to lightly compressed, small simCLR
models (e.g., ResNet-152), which is consistent with [52].
However, subnetworks found on the small-scale pre-trained
simCLR model show a slightly better top-1 retrieval accuracy
after the sparsity approaches an extreme level.

0123456
Remaining Weights (%) 1e7

20

40

60

80

To
p-

1 
Ac

cu
ra

cy
 (%

)

Pre-training Performance for the simCLR Task

ResNet-50 (msim, sim)
ResNet-152 (msim, sim)

Figure 12. Pre-training performance (top-1 retrieval accuracy as de-
fined in Equation 2) over the number of remaining weights. Subnet-
works are found on the simCLR pre-training task with pre-trained
ResNet-50 and ResNet-152 weights.


