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A. Spherical Padding
We propose using spherical padding in our decoder network to reflect the correct topology on a spherical representation

(See Fig 1 for our motivation).

Figure 1. Discrete distributions on the sphere (left) are represented internally as equirectangular grids (right). Although pixels A and B are adjacent on the
sphere, as are C and D, they are not adjacent in the grid. Our spherical padding (shown in Fig. 2b, page 4) corrects for this.

B. Dataset Generation
Since large-scale wide-baseline stereo datasets are difficult to acquire, we create our datasets from corpora of panoramic

scene captures by taking pairs of panoramas that observe overlapping parts of scenes, sampling camera look-at directions for
each panorama using a heuristic that ensures image overlap, and projecting the panoramas to perspective views with a given
field of view. Figure 2(a) illustrates this process. The look-at direction, `1, for the first camera is uniformly sampled from a
band around the equator, which is bounded in colatitude θ∈ [−π4 , π4 ] and azimuth angle φ∈ [0, 2π). The look-at direction, `2,
for the second camera is uniformly sampled from a circular cone centered at the direction `1 so that the magnitude of rotations
are uniformly distributed in each of our datasets. The limit in latitude prevents the cameras from looking only at the ceiling or
floor, which are relatively textureless for many scenes. The aperture of the cone can be adjusted to vary the amount of overlap
between image pairs while maintaining variability in the relative camera orientations. Each camera rotation matrix is then
constructed from the appropriate look-at vector and the world up vector.

In Figure 3(b) in the main paper, we show results on the Matterport-B test set grouped by overlap percentage between the
input images. Matterport3D panoramas contain depth channels which allows us to calculate the overlap percentage between
the input image pair as

O(I0, I1) = min

(
|I0 ∩ I1|
|I0|

,
|I0 ∩ I1|
|I1|

)
(1)

C. Training details
We implemented our model in Tensorflow [1]. The model was trained asynchronously on 40 Tesla P100 GPUs. A single

DirectionNet has approximately 9M parameters. Our full model DirectionNet-9D/6D, which consists of two DirectionNets,
contains in total 18M trainable parameters. Each net was trained for 3M steps.

∗Work done while Kefan was a member of the Google AI Residency program (g.co/airesidency).



(a) Data generation (b) Epipolar geometry

Figure 2. (a) We randomly sample perspective images from pairs of panoramas by picking the look-at directions l1 and l2 of the source and
target cameras based on a heuristic (left). The red boundaries overlaid on the spherical images (center) match the output perspective views
(right). (b) Any point x in one image plane corresponds to a ray shooting from its optical center o, which represents all possible 3D locations
of x in the world. The projection of this ray into the second image plane forms a line called the epipolar line, shown in purple in the figure.
The 2D point in the second image corresponding to x must lie on this line.

Rotation Perturbation. To improve the robustness of DirectionNet-T to rotation estimation errors, we apply data augmen-
tation to its input by perturbing the rotations used for derotation. Given R ∈ SO(3), we perturb it by randomly sampling three
unit vectors no further than 15◦ away from the component vectors of R and projecting the result back onto SO(3). We perturb
the estimated rotation from DirectionNet-R before derotating the input images for DirectionNet-T. This perturbation is critical
to performance. Without it, the translation error is 4◦ worse on InteriorNet, and much worse when the rotation range is large
(MatterportB).

D. Relative Pose Baselines
We now provide additional details of the baselines including the ones not in the main paper.

• DirectionNet-Quat directly generates a probability distribution over the half-hypersphere in S3. In this case, the
spherical decoder consists of 3D upsampling and 3D convolutional layers. Since the output is on a hypersphere,
the discretization requires much higher resolution (O(N3)) compared with our model (O(N2)). DirectionNet-Quat
generates output at 323. We believe the limited resolution is partly responsible for the poor performance compared to
DirectionNet-9D and -6D.

• Bin&Delta [6] adopts the Bin-Delta hybrid model that consists of a classification network which gives a coarse
estimation of the rotation and a regression network that refines the estimate. The rotation space is discretized K-Means
clustering on the training data (we use K = 200). We use the same encoder as ours and DirectionNet-T for the
translation.

• Spherical regression [4] uses a novel spherical exponential activation on the n-sphere to improve the stability of
gradients during training. The final outputs of the model are the absolute values of the coordinates of a unit vector in
Rn, along with n classification outputs for their signs. We use the same encoder as ours followed by separate two-layer
prediction networks (one for a quaternion representation of rotation and one for translation).

• 6D regression uses the same image encoder as ours, followed by two fully connected layers with leaky ReLU and
dropout, to produce a 6D continuous representation for the rotation and 3D for the translation. The 6D output is mapped
to a rotation matrix with a partial Gram-Schmidt procedure; see [12] for details. This approach uses a continuous
representation for 3D rotation, and consequently facilitates training.

• The quaternion regression baseline is implemented using same Siamese network as described in [7] without the
spatial pyramid pooling layer, followed by fully connected layers to produce a 4D quaternion and a 3D translation. We
normalize the quaternion and the translation during training, and use the same loss as suggested in the paper (L2). In our
experiment, we weight the quaternion loss with β = 10, as in the original paper.



InteriorNet-A InteriorNet-B
R t R t

mean (◦) med (◦) rank mean (◦) med (◦) rank mean (◦) med (◦) rank mean (◦) med (◦) rank

DirectionNet

9D 2.87 1.53 2.30 12.36 7.40 2.59 3.88 2.20 2.42 16.36 9.72 2.60
6D 2.90 1.68 2.36 12.48 7.53 2.90 3.81 2.25 2.44 16.67 10.05 2.77
9D-Single 3.93 2.61 3.29 18.17 12.56 4.71 4.84 3.24 3.46 26.56 19.51 4.85

Quat. 23.88 24.53 8.54 32.85 26.92 6.16 22.11 22.43 8.55 39.45 32.05 5.50

Regression

Bin&Delta 8.79 6.59 6.10 19.53 13.45 3.87 6.73 4.57 5.21 31.87 22.61 4.16
Spherical 19.76 15.52 8.21 31.17 23.47 5.97 11.36 8.82 6.25 44.20 35.34 6.23
6D 4.86 3.33 3.77 30.94 22.66 5.95 6.03 3.95 3.99 41.29 34.41 6.04
Quat. 11.14 9.64 6.27 33.14 26.23 6.31 13.94 11.64 6.70 45.44 38.96 6.39

SIFT LMedS 29.55 7.01 7.76 37.91 19.25 8.28 30.46 7.64 7.92 41.83 24.50 5.58
RANSAC 16.69 8.21 7.49 45.51 30.12 8.85 18.75 10.52 7.10 52.46 43.56 8.85

Table 1. Quantitative results on the InteriorNet datasets. We report the mean and median angular error in degrees, as well as mean rank
of each method over all test pairs. Rotation (R) and translation (t) shown separately.

• SIFT+LMedS is a classic technique for recovering the essential matrix from correspondences. Local features are
detected in images with SIFT, and subsequently matched across images. These feature matches are filtered with Lowe’s
proposed distance ratio test. Given the remaining putative correspondences, least median of squares (LMedS) is used to
robustly estimate the essential matrix, from which we can recover the rotation and normalized translation direction. We
use the OpenCV implementation for all of these steps.

• SIFT+RANSAC is the same as SIFT+LMedS, with RANSAC instead of LMedS.

• SuperGlue [50] uses CNN and graph neural network to extract and match local features from images. D2-Net [9]
trains a single CNN as a dense feature descriptor and a feature detector. Both methods require correspondence/depth
supervision from real data, which is not available in our Matterport datasets. We ran pretrained outdoor SuperGlue
(training code not available) and D2-Net with RANSAC.

Additional baselines. The following baselines are not presented in the main paper due to the limit of space. For reference,
the mean rotation error of our DirectionNet-9D tested on Matterport-A is 3.96◦, on Matterport-B is 13.60◦.

• vM [10] provides a probabilistic formulation for the 2D pose by estimating parameters of von Mises distribution on a
circle (S1). We adapt this method to estimate the 3D rotation by producing three von Mises distributions representing
the Euler angles. However, the training is hindered by the singularities known in the Euler angles representation[12].
The mean rotation error tested on Matterport-A is 20.28◦ (5x worse than DirectionNet-9D) and the training diverges on
Matterport-B.

• 3D-RCNN[3] uses a classification-regression hybrid model for 2D pose estimation by uniformly discretize the 2D circle
into bins. This can be directly adapted to 3D rotation by estimating the three Euler angles. Due to the discontinuity of
the Euler angles representation[12], the performance is poor compared with the similar hybrid Bin&Delta model. The
mean rotation error tested on Matterport-A is 18.61◦ and the error on Matterport-B is 32.33◦.

• [9] combines probabilistic regression and an ensemble of the quaternion regression uisng a multi-headed network
called HydraNet. The mean rotation error tested on Matterport-A is 9.38◦ and the error on Matterport-B is 16.09◦.

• PoseNet[2] relocalizes images in known scenes; we consider relative pose in scenes never seen during training. PoseNet
regresses to a 3D position and quaternion, and this is similar to the quaternion regression baseline.

E. Additional Results and Discussion
DirectionNet consistently outperforms regression methods, showing the potential value in a fully convolutional model

that avoids fully-connected regression layers and discontinuous parameterizations of pose. We show more comprehensive
results to compare our model DirectionNet-9D with the baselines. Note that the spherical regression baseline generally has
a higher error in rotation compared with the 6D regression method. Even though the spherical exponential activation does
improve training the regression model, the 6D continuous rotation representation is still preferable to quaternions. Figure 3



R mean (◦) R med (◦) T mean (◦) T med (◦)

DirectionNet-9D (20%) 10.50 9.21 26.74 15.67
DirectionNet-9D (100%) 9.19 6.31 19.36 11.71

Regression 6D (100%) 13.44 12.74 22.53 16.68

SuperGlue (outdoor) 16.35 11.53 24.24 17.15
D2-Net 24.07 5.18 34.36 14.05

Table 2. Generalization to KITTI [15].

and Figure 4 compare the error histogram distribution of our model with the best two regression baselines, the Bin&Delta and
the 6D Regression. Figure 5 compare the error histogram distribution of ours with SIFT+LMedS. Note that SIFT+LMeds has
a higher mode close to 0 degree error compared with other baselines. With accurate correspondences, feature-based methods
will usually outperform deep learning techniques.

To visualize results of the different methods, we select a few points detected by SIFT in image I1 and draw their
corresponding epipolar lines in image I0 as determined by the estimated relative pose.1 Figure 2(b) illustrates the epipolar
geometry. We show additional qualitative results to compare our primary model DirectionNet-9D with baselines representative
of regression models and the classic method, see Fig. 6 and 7) In Fig. 8, we highlight scenarios where our method struggles,
such as repeating or complex texture, scenes with few objects and minimal texture, or extreme motion between images.
Ablation study on loss terms. We study the effects of the loss terms by training the DirectionNet-9D on Matterport-A.
The mean rotation error is 4.68◦ without the spread loss, 4.85◦ without direction loss, and 14.66◦ without distribution loss,
compared with 3.96◦ with all losses. The distribution loss which provides the direct supervision on the output distribution
plays the key role in the training, because we provide the prior knowledge on the distribution by generating the ground truth
from von Mises-Fisher distribution on 2-sphere which resembles the spherical normal distribution. This shows evidence that
distributional learning with dense supervision is advantageous to direct regression [11, 5]. Alternatively, the distribution loss
could use the KL divergence but we found MSE performs better in our experiments.
Multimodal distribution on high uncertainty scenarios. In rare scenarios, our model gives higher uncertainty and produces
multimodal or even antipodal distributions. Based on our observations, this usually happens in certain scenes, for example, the
scene structure exhibits some symmetry or repetitive textures and causes ambiguity in the direction of the motion from two
images. (See Figure 9 and Figure 10 for more examples.)
Outdoor scenes. We used KITTI odometry [15] dataset (sequence 0-8 for train, 9-10 for eval) and sampled image pairs
with a min rotation of 15◦ and translation of 10m (36K train pairs, 1K test pairs, mean translation ∼18m). Table 2 shows
generalization from MatterportA to KITTI (we cropped Matterport images to approximate the KITTI FoV). This is a hard
generalization task as the distribution of relative poses in KITTI is extremely different from Matterport, yet fine-tuning with
just 20% of data is on par with the local feature baselines, and strong results after retraining with 100% of the data indicates
DirectionNet is also effective outdoors.
RANSAC vs. LMedS. We use the OpenCV library (findEssentialMat() and recoverPose()) to implement both baselines by
solving the essential matrix using the 5-point algorithm [8] from which we recover the pose. In the main paper, we showed
that LMedS performs better than RANSAC in terms of errors in translation and median errors in rotation, but RANSAC has
much lower mean errors in rotation on all datasets. Note that due to the nature of indoor images, a large portion of the feature
correspondences may be co-planar (e.g. features on a wall or a floor). For RANSAC, we use the default parameters (threshold
equals 1.0 and the confidence equals 0.999). Figure 11 shows that the design choice of robust fitting method doesn’t make a
big overall difference in our experiments.
Runtime performance. DirectionNet-Single inference takes under 0.02 seconds with a TESLA P100.

1Note, since we do not have ground truth point correspondences between images in our datasets, we cannot draw matching points on the two images for
visualization.



(a) InteriorNet-A (b) InteriorNet-B (c) Matterport-A (d) Matterport-B

Figure 3. Error histograms DirectionNet-9D vs. Bin&Delta. Top: rotation, bottom: translation.

(a) InteriorNet-A (b) InteriorNet-B (c) Matterport-A (d) Matterport-B

Figure 4. Error histograms DirectionNet-9D vs. 6D Regression. Top: rotation, bottom: translation.

(a) InteriorNet-A (b) InteriorNet-B (c) Matterport-A (d) Matterport-B

Figure 5. Error histograms DirectionNet-9D vs. SIFT+LMedS. Top: rotation, bottom: translation.



Figure 6. Additional qualitative results on Matterport-B.



Figure 7. Additional qualitative results on InteriorNet-A.



Figure 8. Failure cases. Our method could fail in cases such as repeating or complex textures, large textureless area or space with few
objects, and extremely large motion.



Figure 9. Multimodal prediction on the rotation. This figure shows two cases in Matterport-B when the DirectionNet-R fails and gives
very high uncertainty in the presence of repeating texture or extreme motion. I0 and I1 are input images. P x

GT , P y
GT , and P z

GT are
the ground truth distributions corresponds to vx, vy , and vz respectively. P x

pred, P y
pred, and P z

pred are the predictions corresponds to
the three directions. The spherical distributions are illustrated as equirectangular heatmaps and the blue dot shows where the spherical
expectation locates.

Figure 10. Multimodal prediction on the translation. This figure shows examples in Matterport-B when the DirectionNet-T produces
multimodal distributions. I0 and I1 are original images and HR(I1) is the input derotated image. PGT is the ground truth distribution of the
translation and Ppred is the prediction. The arcade scene in the first example has a symmetry, so it is ambiguous whether the camera is
moving left or right. Thus, our model produces an antipodal distribution with almost equal uncertainty. The second example has similar
symmetry because of the two identical glass windows, but we can figure out the motion from some inconspicuous clues such as the objects
through the window. Thus, the model produces two modes but it is much more certain toward the correct one and the predicted direction is
very close to the truth. The last two examples demonstrate another difficult scenario for the model to figure out the translation direction
when the translation amount is tiny (3rd: large R and small T, 4th: tiny R and small T). The 3rd example is less ambiguous than the 4th, so
the network gives high certainty at the correct mode. Note that even though the model is highly uncertain in the 4th case, the network still
manages to produce a secondary mode at the correct location.



(a) Visualizations of RANSAC vs. LMedS (b) Error histogram on Matterport-A.

Figure 11. (a) We visualize a few examples and compare RANSAC with LMedS in different scenes. Note that the feature detected by
SIFT often occurs co-planar due to the nature of the indoor scenes. (b) The error histogram shows that RANSAC and LMedS has similar
performance on our dataset.
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