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This supplementary document is organized as follows:
Sec. 1 provides numerical results of SSIM [13], VGG distance [14] and Ma’s score [7].
Sec. 2 provides analysis on the angular consistency when SR is performed on the whole light field.
Sec. 3 provides additional visual comparisons.
Sec. 4 provides the details of networks (Bic-Res, SPconv, and SPconv-Res) used for investigating the divide-and-conquer

strategy.
Sec. 5 provides the details of networks (AlignNet and AggreNet) used in our zero-shot light field SR framework.
Sec. 6 provides additional implementation details of our method.

1. More numerical results
In addition to the PSNR metric discussed in the paper, we further use SSIM [13], VGG distance [14] and Ma’s score [7]

for quantitative evaluation. As shown in Table 1, comparison results on these metrics are basically consistent with PSNR as
we analyzed in the paper. The proposed method shows distinct advantage for light field SR in the wild, especially when the
domain gap is large between source and target.

Method Source Stanford† EPFL† HCI1§ HCI2§

BIC – 0.9281/ 0.2286/ 5.7024 0.9044/ 0.2809/ 5.2326 0.9309/ 0.2029/ 5.3897 0.9039/ 0.3143/ 5.7085
VDSR [4] – 0.9551/ 0.1063/ 7.9528 0.9341/ 0.1432/ 7.4976 0.9542/ 0.0933/ 7.3667 0.9328/ 0.1174/ 7.7669
ZSSR [10] – 0.9516/ 0.1110/ 7.8935 0.9313/ 0.1346/ 7.3973 0.9526/ 0.0912/ 7.0649 0.9296/ 0.1271/ 7.7009
GBSQ [8] – 0.9389/ 0.2117/ 7.2242 0.9276/ 0.1877/ 6.5462 0.9411/ 0.1590/ 5.9527 0.9378/ 0.1738/ 6.8015
BM5D [1] – 0.9521/ 0.1179/ 7.6752 0.9322/ 0.1376/ 7.2373 0.9586/ 0.0809/ 6.8968 0.9363/ 0.1280/ 7.5263
Ours-ZS – 0.9610/ 0.0824/ 8.0565 0.9432/ 0.1064/ 7.5660 0.9591/ 0.0675/ 7.3980 0.9402/ 0.0927/ 7.8337

ResLF [15] SAE§ 0.9555/ 0.0992/ 7.8947 0.9380/ 0.1206/ 7.4571 0.9602/ 0.0663/ 7.3139 0.9401/ 0.0935/ 7.7154
ATO [3] SAE§ 0.9586/ 0.0935/ 7.9097 0.9376/ 0.1285/ 7.4748 0.9561/ 0.0777/ 7.2510 0.9371/ 0.0973/ 7.6929

InterNet [12] SAE§ 0.9593/ 0.0986/ 7.9343 0.9417/ 0.1185/ 7.4885 0.9619/ 0.0703/ 7.2639 0.9439/ 0.0959/ 7.7326
Ours-Pre SAE§ 0.9571/ 0.1000/ 7.8887 0.9374/ 0.1298/ 7.3915 0.9584/ 0.0829/ 7.2122 0.9384/ 0.1122/ 7.6282
Ours-FT SAE§ 0.9603/ 0.0907/ 8.0410 0.9427/ 0.1137/ 7.5695 0.9605/ 0.0681/ 7.4140 0.9414/ 0.0920/ 7.8418

ResLF [15] HFUT† 0.9550/ 0.0841/ 7.8709 0.9413/ 0.0998/ 7.2923 0.9452/ 0.1178/ 6.8222 0.9241/ 0.1554/ 7.3478
ATO [3] HFUT† 0.9600/ 0.0796/ 7.8224 0.9456/ 0.0964/ 7.3113 0.9581/ 0.0696/ 7.0127 0.9356/ 0.1103/ 7.4996

InterNet [12] HFUT† 0.9611/ 0.0771/ 7.8627 0.9469/ 0.0803/ 7.4068 0.9613/ 0.0719/ 7.0392 0.9393/ 0.1068/ 7.5428
Ours-Pre HFUT† 0.9588/ 0.0925/ 7.8064 0.9426/ 0.1011/ 7.3031 0.9565/ 0.0838/ 7.0422 0.9351/ 0.1221/ 7.3894
Ours-FT HFUT† 0.9635/ 0.0753/ 8.0575 0.9490/ 0.0849/ 7.6133 0.9647/ 0.0543/ 7.3913 0.9473/ 0.0768/ 7.8571

Table 1. SSIM(↑)/ VGG×100(↓)/ Ma’s score(↑) comparisons between different SR methods on different light field datasets at the scaling
factor of 2 (↑ indicates that higher is better while ↓ indicates that lower is better). The subscript † denotes real-world datasets while the
subscript § denotes synthetic datasets. Gray background indicates large domain gap.



2. Angular consistency analysis
As mentioned in the paper, the proposed method can be readily applied to any reference view in the light field other than

the central view. To analyze the angular consistency of the SR result, we super-resolve the whole light field of 10 scenes
randomly selected from the HCI2 dataset. Since this synthetic dataset contains ground truth depth map for each scene, we
are able to evaluate the angular consistency of the SR result by conducting depth estimation on the super-resolved light field.
Due to the fact that depth information is highly sensitive to the angular consistency, the difference between the estimated
depth map and the ground truth one reflects the SR performance on the other side. Specifically, we adopt a representative
non-learning-based light field depth estimation algorithm OCC [11] for the evaluation. VDSR [4] (single-image), RCAN [16]
(single-image), BM5D [1] (classic), InterNet [12] (deep-learning, with the HFUT dataset as source), VDSR-ZS (ours with
VDSR as the pre-upsampler), and RCAN-ZS (ours with RCAN as the pre-upsampler) are compared in terms of both PSNR
across the whole light field and MSE of estimated disparity. As shown in Fig. 1, our VDSR-ZS dominates other methods
except RCAN, while our RCAN-ZS dominates RCAN, indicating the superiority of our zero-shot light field SR method in
terms of both angular consistency and reconstruction fidelity.���� �����	
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Figure 1. Comparisons on reconstruction fidelity and angular consistency between light fields super-resolved through different methods.



3. More visual results
We show more visual results in Fig. 2.
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Figure 2. Visual comparisons of super-resolved central view (cropped for better visualization) through different methods together with the
ground truth (GT) at the scaling factor of 2. The inputs of the first scene Reflective12 and the second scene Bedroom are the downsampled
light fields while the input of the third scene Table is the original light field. Zoom in the figure for a better visual experience.



4. Details of Bic-Res, SPconv and SPconv-Res
We adopt different single image SR networks for investigating the divide-and-conquer strategy, the details of which are

illustrated in Fig. 3. ��������	
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Figure 3. Details of networks used for investigation on single image SR task. (a) illustrates network Bic-Res while (b) and (c) illustrate
SPconv and SPconv-Res, respectively. We keep the parameters of these three networks the same during the investigation by adjusting the
numbers of Conv-ReLU blocks and channels of each convolution layer.



5. Details of AlignNet and AggreNet
The network details of AlignNet and AggreNet used in our zero-shot light field SR framework are provided in Table 2 and

Table 3, respectively.

Layer Type ReLU Filter Size Stride Zero Padding Output Output Size
Input – – – – PSV (ZLR) B × L×A×X × Y

Level-wise feature extraction
2-D convolution X 1× 1 1× 1 0× 0 – B × L× 2×X × Y

reshape – – – – – B × 2L×X × Y
Disparity estimation

2-D convolution X 7× 7 1× 1 3× 3 – B × 100×X × Y
2-D convolution X 5× 5 1× 1 2× 2 – B × 100×X × Y
2-D convolution X 3× 3 1× 1 1× 1 – B × 50×X × Y
2-D convolution – 1× 1 1× 1 0× 0 dLR B × 1×X × Y

Table 2. Network details of AlignNet. For an input low-resolution (LR) light field ZLR ∈ RU×V×X×Y , given a disparity level number L
for PSV generator, the output of AlignNet is an LR disparity map dLR. Note that A = U × V and B denotes the batch size.

Layer Type ReLU Filter Size Stride Zero Padding Output Output Size
Input – – – – WLR B ×A× αX × αY

Residual prediction
2-D convolution X 7× 7 1× 1 3× 3 – B × 32× αX × αY
2-D convolution X 7× 7 1× 1 3× 3 – B × 64× αX × αY
2-D convolution X 7× 7 1× 1 3× 3 – B × 32× αX × αY
2-D convolution X 7× 7 1× 1 3× 3 – B × 16× αX × αY
2-D convolution – 7× 7 1× 1 3× 3 AggreNetΘ2

(WLR) B × 1× αX × αY

Table 3. Network details of AggreNet. For an aligned pre-upsampled LR light field WLR ∈ RU×V×αX×αY , the output of AggreNet is
an HR residual map between the pre-upsampled LR central view and the ideal HR central view. Note that A = U × V and B denotes the
batch size.



6. Implementation details
To make full use of the training data, we randomly crop patches with size 64× 64 for scale 2 and size 72× 72 for scale 3

and exploit 4D flipping and rotation proposed in [9] for data augmentation.
During training, we set the weighting factors γ1 and γ2 as 0.5 and 0.1 empirically. The batch size is set as 1. We use the

ADAM optimizer [5] with α = 0.9 and β = 0.999. For the training from scratch (Ours-ZS), the initial learning rate for each
stage is 10−4 and for the training of finetune (Ours-FT), the initial learning rate for each stage is 10−5.

After training, we extend the geometric self-ensemble [6] to 4D light field with 4D flipping and rotation. The iterative
back-projection refinement [2] used in ZSSR [10] is also adopted for post-processing. We implement our method using
Pytorch and run all experiments on a GTX 1080Ti GPU.
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