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1. Notations
This is a quick index of the notations in the order of appearance.

General notations
r The current interaction round index.
tr The index of the current user-interacting frame.
Mr The mask results of all the frames of the current round.
Mr

j The mask result of the j-th frame of the current round.
Mr−1 The mask results of all the frames of the previous round.

Notations related to interaction
Mr−1

tr The previous mask result of the current user-interacting frame.
Notations related to propagation

H,W The spatial dimensions of the features after the encoder with stride 16.
Ck, Cv The channel dimensions of the “key” and “value” features respectively.
T The number of frames in the memory bank.
kM ,vM The extracted “key” and “value” features from the memory encoder.
kQ,vQ The extracted “key” and “value” features from the query encoder.

Fij
The dot product between the query feature at position i
and the memory feature at position j.

Wij
The normalized affinity between the query feature at position i
and the memory feature at position j.

k A hyperparameter. Top-k filtering is applied along the memory dimension.
Topk

j (F) Indices of affinities that are top-k in the j-th column (i.e., memory) of F.
mj The aggregated memory feature for the query position j.

Notations related to fusion
ti The target frame index to be fused.
tc The closest previously interacted frame index in the direction of propagation.

Mr′ The current mask results after propagation and before fusion.
D+,D− The positive and negative mask differences respectively.
A+,A− The positive and negative mask differences aligned with the target frame ti.

nr, nc
The normalized temporal distance between the target frame ti and
the current/previously interacted frames tr and tc respectively.

2. Comparisons with KMN
KMN [3] presents two major ideas: 1) hide-and-seek training augmentation and 2) kernelized memory reading. We focus

only on 2) here. KMN assumes that each memory position should only attend to a local window (specified by a Gaussian
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distribution with a fixed σ) in the query. Thus, filtering is performed on the query for every memory position. In contrast,
our top-k filtering does not assume any spatial prior and performs on the memory for every query position. Ours is discrete,
leading to a efficient algorithm while KMN slows the algorithm down. Note that the two methods are not at odds with each
other – we can use both at the same time to obtain higher accuracy in the test-dev set (see our project page) without
retraining.
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