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1. Learning BRDF bases from MERL dataset

This section provides further implementation details of
how to learn the BRDF bases. Given a collection of
real world log-BRDFs, the set of PCA bases D can be
found by finding N eigen-functions of the function space.
Since our training set (i.e. MERL [3]) records only BRDF
values at discretely sampled incident angles θ (i.e. θ ∈
{0, 1, 2, ..., 89}), we estimate the BRDF-value at any angle
via interpolation. Formally, given a collection of sampled
BRDFs stored as a matrix Q whose columns each repre-
sents a distinct BRDF, we define the ith basis function of D
as

di = interp(uisi), where log Q
svd
= USV (13)

where ui is the ith leading left singular vector of logQ, and
si the corresponding singular value. interp is an interpola-
tion operator that returns a continuous function (log-BRDF
bases) from its discrete sampling. We used linear interpo-
lation. The mean BRDF µ(·) can be similarly interpolated
from the row wise mean of logQ. This interpolation gives
rise to continuous basis functions, though with one caveat of
losing exact orthogonality of the bases. However, in prac-
tice we found this effect can be safely ignored.

We also scale down ‘less prominent’ basis functions by
weighing them using their corresponding singular values.
As a result, the parameter c follows a spherical distribution
in training BRDF space, and Ec(c) becomes an isotropic
penalty on c. Note that, the regression of c is inspired by
the ridge regression [4, 5]. In [2] Hui et al. used a similar
dictionary-based BRDF model with sparseness constrains
by solving a LASSO regression. However, we found the
generalization ability of their method is inferior compared
with our model.

2. Additional Experiment Results

More experiment results are provide in this section to
illustrate the performance of our method.

2.0.1 BRDFs used for synthetic experiments

Table 1 lists the BRDFs used for the 5-round cross
validation in our synthetic experiments. The 25 test-
ing BRDFs cover a wide range of materials from diffu-
sive (e.g. fabric/rubber/latex), mildly specular (e.g. plas-
tics/quartz/marble), to highly specular (e.g. metals/metallic
paints/crystals).

2.0.2 Visualization of reconstructed shape from syn-
thetic images

Fig. 1 illustrates examples of recovered point cloud.
As a bonus case, we include an open and smooth sur-

face (Himmelblau’s function) as the 5th model in our syn-
thetic experiments. The surface is boundless, smoothly
varying and made from highly specular materials, which is
extremely challenging for shape-from-silhouette and multi-
view stereo methods. 10 views are rendered as inputs for
reconstruction. Fig. 2 illustrates the shape and reconstruc-
tion results of Himmelblau’s function.

2.0.3 Robustness to non-ideally co-located configura-
tion or anisotropic light source.

While our algorithm assumes an isotropic point light source
that is co-located with camera optical centre, this setup
can become impractical for real-world applications. In
fact, most commodity point light sources (e.g. LED bulbs)
exhibit anisotropic radial intensity distribution (RID), and
a beam-splitter is typically necessary to facilitate the co-
localisation of light and camera. Additionally, the light



Table 1: Testing BRDFs in MERL dataset for each round of cross validation.

round 1 2 3 4 5

test BRDFs

alumina-oxide gray-plastic ss440 color-changing-paint1 steel
black-obsidian pink-jasper tungsten-carbide gold-metallic-paint alum-bronze
black-phenolic chrome white-acrylic red-fabric red-metallic-paint

black-soft-plastic silicon-nitrade red-specular-plastic green-latex chrome-steel
white-marble specular-black-phenolic delrin pure-rubber tungsten-carbide

Figure 1: Recovered point cloud rendered from novel viewpoints.

source would need to be calibrated before use. Notwith-
standing, we found that the algorithm is reasonably robust
to slightly misplaced or anisotropic light even without cali-
bration.

• Fig. 3a illustrates how performance degrades as dis-

placement increases, where the displacement is always
in camera’s x-axis and is measured in world units.1

An interesting observation is the performance does not

1We vary displacement from zero to the target object’s span, i.e. 0.25
world unit or 25 centimetres.
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Figure 2: Reconstruction of a boundless, smooth surface (bird’s-eye view of Himmelblau’s function); contours are overlaid
on the depth map from which we can see four global minima.

start to deteriorate - but rather marginally improves in
depth and BRDF estimation - with a small displace-
ment. Perhaps uncoincidentally, such displacement
also leads to a small optimal difference angle for min-
imal BRDF sampling [4].

• Fig. 3b shows how performance degrades with an
anisotropic RID modeled by cosφ(θ), where θ is the
angle between out-going light ray and principal axis of
light source2 and φ controls the anistropicity of RID
(φ = 0 yields isotropic light source) as illustrated in
Fig. 3c. It is seen that the setup is robust to even
strongly anisotropic light source, which is expected
since the target’s angular extent in each view is lim-
ited (apprx. 20 degrees).

2.0.4 More real image tests.

Fig. 4 shows the input reference image, recovered shape and
re-rendered image with recovered reflectance.

3. Finding the globally optimal solutions of
{n, z} in Eq. (12).

Here we show Eq. (12) can be globally minimized over
{n, z} direction. We start by dissecting this optimization

2Here we assume light source and camera are co-axial when rendering
images.

into the summation of |K| independent sub-problems, i.e.

min
n,z

EQPM(n, z, z̃) =
∑
k∈K

min
nk,zk

EkQPM(nk, zk) where

(14)

EkQPM(nk, zk) = Ekp (nk, zk) + λsE
k
s (nk, z̃k) + σ(i)(z̃k − zk)2

(15)

Ekp (nk, zk) =
1

|K|M
min

|Mk|=M

∑
m∈Mk

Lδ
(
Φm(nk, zk, c)

)
Eks (nk, z̃k) =

1

|K||Nk|
∑
j∈Nk

(
nTk (x̃k − x̃j)

)2
x̃k = z̃k(P+

1 pk − o1) + o1

The inputs to (15) have 3 degrees of freedom (DOFs) (2
for nk and 1 for zk). Let us further assume that depth zk
is bounded and EkQPM is Lipschitz continuous, we may then
resort to the DIRECT search approach [1] which guarantees
global minimal solution despite non-convexity. Therefore
EQPM as a whole can be globally minimized in linear time
complexity w.r.t. |K|. In practise, we used a randomized
algorithm (PatchMatch) for searching optimal {n, z} for its
computational efficiency.
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Figure 3: Normal mean angular and depth RMSE w.r.t. various degrees of light displacement and anisotropicity.
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Figure 4: Recovered normal and depth maps for real-world objects.

the IEEE International Conference on Computer Vision, pages
5362–5370, 2017. 1

[3] Wojciech Matusik, Hanspeter Pfister, Matt Brand, and
Leonard McMillan. A data-driven reflectance model. ACM
Transactions on Graphics, 22(3):759–769, July 2003. 1

[4] Jannik Boll Nielsen, Henrik Wann Jensen, and Ravi Ra-
mamoorthi. On optimal, minimal brdf sampling for re-
flectance acquisition. ACM Transactions on Graphics (TOG),

34(6):186, 2015. 1, 3
[5] Zexiang Xu, Jannik Boll Nielsen, Jiyang Yu, Henrik Wann

Jensen, and Ravi Ramamoorthi. Minimal brdf sampling for
two-shot near-field reflectance acquisition. ACM Transactions
on Graphics (TOG), 35(6):188, 2016. 1


