Supplementary Materials: Multi-view 3D Reconstruction of a Texture-less Smooth Surface of Unknown Generic Reflectance

Ziang Cheng¹, Hongdong Li¹, Yuta Asano², Yinqiang Zheng³, Imari Sato² ¹Australian National University ²National Institute of Informatics,³The University of Tokyo, Japan

{ziang.cheng,hongdong.li}@anu.edu.au

1. Learning BRDF bases from MERL dataset

This section provides further implementation details of how to learn the BRDF bases. Given a collection of real world log-BRDFs, the set of PCA bases D can be found by finding N eigen-functions of the function space. Since our training set (*i.e.* MERL [3]) records only BRDF values at discretely sampled incident angles θ (*i.e.* $\theta \in$ $\{0, 1, 2, ..., 89\}$), we estimate the BRDF-value at any angle via interpolation. Formally, given a collection of sampled BRDFs stored as a matrix Q whose columns each represents a distinct BRDF, we define the i_{th} basis function of D as

$$d_i = interp(u_i s_i), \quad \text{where } \log Q \stackrel{\text{svd}}{=} USV$$
(13)

where u_i is the i_{th} leading left singular vector of $\log Q$, and s_i the corresponding singular value. *interp* is an interpolation operator that returns a continuous function (log-BRDF bases) from its discrete sampling. We used linear interpolation. The mean BRDF $\mu(\cdot)$ can be similarly interpolated from the row wise mean of $\log Q$. This interpolation gives rise to continuous basis functions, though with one caveat of losing exact orthogonality of the bases. However, in practice we found this effect can be safely ignored.

We also scale down 'less prominent' basis functions by weighing them using their corresponding singular values. As a result, the parameter c follows a spherical distribution in training BRDF space, and $E_c(\mathbf{c})$ becomes an isotropic penalty on c. Note that, the regression of c is inspired by the ridge regression [4, 5]. In [2] Hui *et al.* used a similar dictionary-based BRDF model with sparseness constrains by solving a LASSO regression. However, we found the generalization ability of their method is inferior compared with our model.

2. Additional Experiment Results

More experiment results are provide in this section to illustrate the performance of our method.

2.0.1 BRDFs used for synthetic experiments

Table 1 lists the BRDFs used for the 5-round cross validation in our synthetic experiments. The 25 testing BRDFs cover a wide range of materials from diffusive (*e.g.* fabric/rubber/latex), mildly specular (*e.g.* plastics/quartz/marble), to highly specular (*e.g.* metals/metallic paints/crystals).

2.0.2 Visualization of reconstructed shape from synthetic images

Fig. 1 illustrates examples of recovered point cloud.

As a bonus case, we include an open and smooth surface (Himmelblau's function) as the 5_{th} model in our synthetic experiments. The surface is boundless, smoothly varying and made from highly specular materials, which is extremely challenging for shape-from-silhouette and multiview stereo methods. 10 views are rendered as inputs for reconstruction. Fig. 2 illustrates the shape and reconstruction results of Himmelblau's function.

2.0.3 Robustness to non-ideally co-located configuration or *anisotropic* light source.

While our algorithm assumes an isotropic point light source that is co-located with camera optical centre, this setup can become impractical for real-world applications. In fact, most commodity point light sources (*e.g.* LED bulbs) exhibit anisotropic radial intensity distribution (RID), and a beam-splitter is typically necessary to facilitate the colocalisation of light and camera. Additionally, the light Table 1: Testing BRDFs in MERL dataset for each round of cross validation.

round	1	2	3	4	5
test BRDFs	alumina-oxide	gray-plastic	ss440	color-changing-paint1	steel
	black-obsidian	pink-jasper	tungsten-carbide	gold-metallic-paint	alum-bronze
	black-phenolic	chrome	white-acrylic	red-fabric	red-metallic-paint
	black-soft-plastic	silicon-nitrade	red-specular-plastic	green-latex	chrome-steel
	white-marble	specular-black-phenolic	delrin	pure-rubber	tungsten-carbide

Figure 1: Recovered point cloud rendered from novel viewpoints.

source would need to be calibrated before use. Notwithstanding, we found that the algorithm is reasonably robust to slightly misplaced or anisotropic light even without calibration.

• Fig. 3a illustrates how performance degrades as dis-

placement increases, where the displacement is always in camera's x-axis and is measured in world units.¹ An interesting observation is the performance does not

 $^{^{1}\}mathrm{We}$ vary displacement from zero to the target object's span, *i.e.* 0.25 world unit or 25 centimetres.

Figure 2: Reconstruction of a boundless, smooth surface (bird's-eye view of Himmelblau's function); contours are overlaid on the depth map from which we can see four global minima.

start to deteriorate - but rather marginally improves in depth and BRDF estimation - with a small displacement. Perhaps uncoincidentally, such displacement also leads to a small optimal difference angle for minimal BRDF sampling [4].

Fig. 3b shows how performance degrades with an anisotropic RID modeled by cos^φ(θ), where θ is the angle between out-going light ray and principal axis of light source² and φ controls the anistropicity of RID (φ = 0 yields isotropic light source) as illustrated in Fig. 3c. It is seen that the setup is robust to even strongly anisotropic light source, which is expected since the target's angular extent in each view is limited (apprx. 20 degrees).

2.0.4 More real image tests.

Fig. 4 shows the input reference image, recovered shape and re-rendered image with recovered reflectance.

3. Finding the globally optimal solutions of $\{n, z\}$ in Eq. (12).

Here we show Eq. (12) can be globally minimized over $\{n, z\}$ direction. We start by dissecting this optimization

into the summation of |K| independent sub-problems, *i.e.*

$$\begin{split} \min_{\mathbf{n},\mathbf{z}} E_{\text{QPM}}(\mathbf{n},\mathbf{z},\tilde{\mathbf{z}}) &= \sum_{k \in K} \min_{n_k, z_k} E_{\text{QPM}}^k(n_k, z_k) \quad \text{where} \\ & (14) \\ E_{\text{QPM}}^k(n_k, z_k) &= E_p^k(n_k, z_k) + \lambda_s E_s^k(n_k, \tilde{z}_k) + \sigma^{(i)}(\tilde{z}_k - z_k)^2 \\ & (15) \\ E_p^k(n_k, z_k) &= \frac{1}{|K|\mathcal{M}|} \min_{|M_k| = \mathcal{M}} \sum_{m \in M_k} L_{\delta} \left(\Phi_m(n_k, z_k, \mathbf{c}) \right) \\ E_s^k(n_k, \tilde{z}_k) &= \frac{1}{|K||\mathcal{N}_k|} \sum_{i \in \mathcal{N}_k} \left(n_k^T (\tilde{\mathbf{x}}_k - \tilde{\mathbf{x}}_j) \right)^2 \end{split}$$

$$\tilde{\mathbf{x}}_k = \tilde{z}_k (P_1^+ p_k - o_1) + o_1$$

The inputs to (15) have 3 degrees of freedom (DOFs) (2 for n_k and 1 for z_k). Let us further assume that depth z_k is bounded and E_{QPM}^k is Lipschitz continuous, we may then resort to the DIRECT search approach [1] which guarantees global minimal solution despite non-convexity. Therefore E_{QPM} as a whole can be globally minimized in linear time complexity w.r.t. |K|. In practise, we used a randomized algorithm (PatchMatch) for searching optimal $\{\mathbf{n}, \mathbf{z}\}$ for its computational efficiency.

References

- Robert Hooke and Terry A Jeeves. DIRECT search: Solution of numerical and statistical problems. *Journal of the ACM* (*JACM*), 8(2):212–229, 1961.
- [2] Zhuo Hui, Kalyan Sunkavalli, Joon-Young Lee, Sunil Hadap, Jian Wang, and Aswin C Sankaranarayanan. Reflectance capture using univariate sampling of brdfs. In *Proceedings of*

²Here we assume light source and camera are co-axial when rendering images.

Figure 3: Normal mean angular and depth RMSE w.r.t. various degrees of light displacement and anisotropicity.

Figure 4: Recovered normal and depth maps for real-world objects.

the IEEE International Conference on Computer Vision, pages 5362–5370, 2017. 1

- [3] Wojciech Matusik, Hanspeter Pfister, Matt Brand, and Leonard McMillan. A data-driven reflectance model. *ACM Transactions on Graphics*, 22(3):759–769, July 2003. 1
- [4] Jannik Boll Nielsen, Henrik Wann Jensen, and Ravi Ramamoorthi. On optimal, minimal brdf sampling for reflectance acquisition. ACM Transactions on Graphics (TOG),

34(6):186, 2015. 1, 3

[5] Zexiang Xu, Jannik Boll Nielsen, Jiyang Yu, Henrik Wann Jensen, and Ravi Ramamoorthi. Minimal brdf sampling for two-shot near-field reflectance acquisition. ACM Transactions on Graphics (TOG), 35(6):188, 2016. 1