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In this supplementary document, we provide cross validation on different training datasets and additional
visual comparisons from the GoPro [1] and HIDE[2] datasets.

1 Cross validation on different training datasets

To show the impact of different training datasets, we cross validate our method by training on HIDE[2]
dataset. Table. 1 shows the results of our method trained on HIDE and GoPro, respectively. As we can
see, the final performance of the proposed method depends on both external and internal dataset. However,
regardless of the performance of pre-training, the test-time adaptation consistently improves the performance
among all testing datasets.

Method Training data GoPro HIDE Adobe240 REDS

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Pre-trained

HIDE
32.23 0.955 31.03 0.946 32.34 0.939 29.76 0.86

Ours 32.45 0.957 31.24 0.948 32.53 0.942 29.88 0.87
Pre-trained

GoPro
32.30 0.955 30.35 0.932 32.70 0.944 29.76 0.87

Ours 32.50 0.958 30.55 0.935 32.87 0.946 29.96 0.89

Table 1: Cross validation of our meta-auxiliary training method on different training datasets.
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(a) Input blurry image (b) SelfDeblur [3]
(2,500 updates)

(c) Ours, no updates (d) Ours, five updates (e) GT

Figure 1: Sample deblurring results correspond to Fig.1 in the main paper. We add the ground truth for better com-
parison. It is evident that the results generated by SelfDeblur [3] contain severe artifacts. In contrast, the proposed
method generates better results, especially when it is adapted to this particular case, as shown in (d).

Blurry image Blurry patch DeblurGAN-V2 SRN DMPHN Ours GT

Figure 3: Qualitative comparison with state-of-the-art approaches. Addition to Fig.5 in paper.

Input No update 1 update 2 updates 3 updates 4 updates 5 updates GT

Figure 2: Visual illustration of the unfolded adaptation process for model with K=5 on the HIDE dataset [2]. Addition
to Fig. 8 in paper.
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(a) Input (b) DeblurGAN-V2 [6]

(c) SRN [4] (d) DMPHN [5]

(e) Ours (f) GT

Figure 4: Qualitative comparison on HIDE dataset [2].

3



(a) Input (b) DeblurGAN-V2 [6]

(c) SRN [4] (d) DMPHN [5]

(e) Ours (f) GT

Figure 5: Qualitative comparison on HIDE dataset [2].
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(a) Input (b) DeblurGAN-V2 [6]

(c) SRN [4] (d) DMPHN [5]

(e) Ours (f) GT

Figure 6: Qualitative comparison on HIDE dataset [2].
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(a) Input (b) DeblurGAN-V2 [6]

(c) SRN [4] (d) DMPHN [5]

(e) Ours (f) GT

Figure 7: Qualitative comparison on GoPro dataset [1].
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