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S1. More experiment details
Network architectures

For every method, we used the Feature Pyramid Net-
work [11] to effectively encode representations from mul-
tiple scales. However, we only use pixel-wise randomly
initialized linear (1 × 1 convolutional) layer for each level
of the intermediate feature maps from ResNet-18 [5]. As
noted in the main paper, we projected each of the feature
maps to 128 dimensions instead of 256 from the FPN. Af-
ter the linear projection, we directly bilinear-upsampled to
1/4 scale of image resolution and element-wise summed to
get the final 128 × H ×W representation without the last
3 × 3 convolutional smoothing layers (H = W = 80 dur-
ing training with 320 × 320 images). Note that this is a
simplified version of the semantic segmentation branch of
Panoptic FPN [8], a simple application of FPN to segmen-
tation task. At the end, the only added parameters from
ResNet-18 are 4 1× 1 convolutional layers.

IIC For controlled experiments, we changed the net-
work architecture of default IIC from the original shal-
low VGG-like model to FPN with ResNet-18 as described
above. Following the original paper [6], we used auxiliary
over-clustering loss: We kept the original k = 45 since
the difference was minimal between k ∈ {45, 100, 250}.
Also, the original IIC objective has a hyper-parameter λ
which controls the “strictness” of the uniform distribution
of clustering constraint. This could potentially alleviate
the problem that IIC faces. In Table 1 we tested with
λ ∈ {1, 1.25, 1.5, 1.75, 2, 3} on COCO-All and λ = 1
performed the best, hence we kept λ = 1 in all our ex-
periments. Similarly, we tested different learning rates
η ∈ {0.1, 0.01, 0.001, 0.0001} and η = 0.0001 was op-
timal. Both of these λ and η coincide with those in the
original paper.

IIC-res12. We discovered that the shallow version of
IIC performs better qualitatively on the (processed) COCO
dataset [6]. This is because a shallow network tends to
overfit to low-level visual signals such as color and texture

due to its narrow receptive field. Since the dataset is pre-
processed to reduce images that have too many pixels in
the things categories, which are often visually more com-
plex, perhaps the shallow IIC can be more effective for solv-
ing simple background segmentation compared to deep IIC.
Therefore, we tested both versions. Note that the shallow
VGG-like network used in the original IIC paper is unable
to load ImageNet-pretrained weight, hence we instead used
the first two residual layers res1 and res2 of ResNet-18 [5]
as an alternative. They have nearly the same number of pa-
rameters and in the main paper, Table 3, we show that IIC
with res12 achieves similar accuracy on the original COCO-
Stuff benchmark (27.7 and 27.92) [6]. Similar to IIC, we
apply auxiliary over-clustering with k = 45.

Modified DC. Since DeepCluster [1] was originally de-
signed for the task of image clustering, we modified the
framework to fit the task of segmentation (pixel-wise clas-
sification). The network alternates between computing
pseudo-labels and training. As mentioned in the main pa-
per, the representation is pixel-level by removing the fi-
nal pooling layer. This makes storing the feature vectors
of the entire dataset infeasible, so we perform mini-batch
k-means to first estimate cluster centroids, assign pseudo-
labels, and train the network with the pseudo-labels. The
same set of transformations as PiCIE is used on each im-
age during training. Note that similar to IIC, image gradi-
ent is not concatenated in the input when initialized from
ImageNet-weight. We do not apply over-clustering since
the model without over-clustering performed the best com-
pared to k ∈ {100, 250, 1000, 2500}.

Datasets

For training modified DC and PiCIE, we used simple
pre-processing: resizing and center-crop to 320 × 320. For
IIC, we used the original paper’s pre-processing with their
published code.

Transformations. For photometric transformations, we
randomly applied color jitter, gray scale, and Gaussian
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λ 1.0 1.25 1.5 1.75 2.0 3.0

Acc 21.8 17.6 16.8 15.6 16.4 16.6
mIoU 6.7 7.0 6.4 6.0 6.5 6.5

Table 1: IIC with different λ.

blur. Random jitter consists of jittering brightness, con-
trast, saturation, and hue. All jittering transformations
are applied with probability p = 0.8 and control factors
0.3, 0.3, 0.3, 0.1, respectively. Random gray scale is ap-
plied with probability of p = 0.2. Random Gaussian blur
is applied with probability of p = 0.5 and radius randomly
chosen: σ ∈ [0.1, 2]. For geometric transformations, we
applied random crop and random horizontal flip with crop
factor r ∈ [0.5, 1] and flipping probability p = 0.5. In order
to ensure that the same transformations are applied during
clustering and training, we first sample transformations dur-
ing clustering and store them in a list to re-use during train-
ing.These hyper-parameters are a standard choice adopted
in many other works [4, 2, 3].

Training

Clustering. The cluster centroids are computed with
mini-batch k-means with GPUs using the FAISS library [7].
The initial cluster centroids are computed with 50 batches
with batch size of 128, then the centroids are updated every
20 iterations. For every other hyperparameters related to
clustering, we followed Caron et al. [1]. Since this process
is highly optimized, it takes about 20 minutes to prepare
the pseudo-labels for training every epoch on the COCO
dataset, which makes less than half for training the network
in total compared to IIC using the published code.

Training details. We trained every method with 10
epochs when trained with ImageNet weight initialization,
and 20 epochs when trained from scratch. For modified
DC and PiCIE, we used ADAM optimizer with learning
rate η = 1 × 10−3, β = (0.9, 0.999) and weight decay
0. For IIC, their original hyperparameter setting was better,
so we kept their setting (η = 1 × 10−4). For the trans-
fer learning and supervised training experiments, we used
η = 1 × 10−3, β = (0.9, 0.999) and weight decay 0, con-
sistent with the setting from the main experiments. For the
final objective, we applied weighted cross-entropy loss with
per-cluster weight is balanced with the size of each cluster.
We simply average the cross and within losses.

Evaluation metric. For evaluating our model, we fol-
lowed the evaluation metric from [6] with pixel accuracy
after Hungarian-matching [10] the cluster assignments to
the ground truth labels. We also report mean IoU to ac-
count for false positives and negatives. In Table 2 of the
main paper, we compute the accuracy and mIoU from the
same model trained on COCO-All (K = 27), but evaluated

by only accounting for the labels in each partition. This
can be done efficiently by computing the confusion matrix
of the all classes K = 27 first and partitioning the matrix
accordingly. In Table 3 of the main paper, we closely fol-
low the experiment setting of [6]: the image resolution is
128× 128, the images are pre-scaled and constant-padded,
and K = 15 which means only stuff categories are consid-
ered for evaluation.

Visualizations

For producing consistent visualizations, we used major-
ity vote for each obtained cluster. That is, we first assigned
color values to each ground truth label and for each ob-
tained set of clusters, we assign the color of the majority
class. In the main paper, notice that we showed IIC-res12
for COCO and IIC for Cityscapes. We included the version
that had better qualitative results. We hypothesize that since
COCO was preprocessed to include more stuff categories, it
is easier for the shallow network which overfits to low-level
cues (e.g., color and texture) to segment images well since
the majority of stuff instances are visually simple. For the
nearest neighbor result, we first chose successful and fail-
ure results from the large set of randomly selected images
(results below), picked a pixel coordinate of interest, and
computed the nearest neighbor on the entire validation set
of COCO-All. Then, we extracted the images that the neigh-
bors belong to and visualized.

S2. More results
In this section, we show more qualitative results ran-

domly chosen for both IIC and IIC-res12, as well as modi-
fied DC and PiCIE.

Robustness on Color and Geometric transforma-
tions

We show that PiCIE successfully learns photometric
invariance and geometric equivariance by evaluating our
model with test-time augmentation. We apply the same set
of photometric transformations (color jitter, Gaussian blur,
and greyscale) and geometric transformations (horizontal
flip and random crop) and report the results in Table 2.

S3. Analysis
We discuss a few possible directions for future study.

Note that MDC stands for modified DeepCluster.

Visual ambiguity. As shown in visualization, visual am-
biguity leads to mis-classification of certain classes. Snowy
ground is often confused with either sky or water, and grass
on a flat ground is confused with ground. The core problem
is twofold: First, the classification of the segment masks
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Brightness Contrast Saturation Hue Grayscale Gaussian blur Horizontal Flip Random Crop Accuracy mIoU

48.09 13.84
X 47.98 13.59

X 48.08 13.63
X 48.09 13.64

X 48.09 13.65
X 47.98 13.63

X 48.03 13.59
X X X X X X 47.42 13.39

X 47.61 13.71
X 48.08 13.63

X X 47.60 13.76
X X X X X X X X 46.28 13.16

Table 2: We evaluate PiCIE with test-time augmentation where each transformation follows the same hyper-parameters as training, when
applied. The result shows that PiCIE is robust to photometric and geometric transformations during inference.

are done with cluster centroids, which follow the “major-
ity trend.” For example, the majority of “ground” instances
is not covered by snow, making the confidence low. Sec-
ond, the visual similarity does not always correlate to the
semantic similarity, and such discrepancy leads to confu-
sion. “Snow ground” is often texture-less and mono-colore,
similar to “sky” or ”water.” This is an inherent limitation of
unsupervised learning methods.

Co-occurrence. Some foreground classes such as “boat”
or “airplane”, only occur surrounded by “water” or “sky.”
Since stuff categories have far more pixels, they are often
subsumed in the co-occurring background classes. We hy-
pothesize that this effect will be mitigated if the dataset had
more images of stand-alone “boat” or “airplane.” or with an
effective way to contrast between the two entities such as
using either a generic or a learned boundary detector, which
can be a future work.

Boundary precision. Since we do not have any supervi-
sion to train for precise boundaries, many foreground in-
stances are segmented with over-confidence. Pixels around
boundaries are hard samples to correctly predict. Using a
generic edge detector or post-processing through iterative
refinement such as CRF [9] may improve the result, which
is outside the scope of our project.
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[9] Philipp Krähenbühl and Vladlen Koltun. Efficient inference
in fully connected crfs with gaussian edge potentials. In Ad-
vances in neural information processing systems, pages 109–
117, 2011. 4323

[10] Harold W Kuhn. The hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83–97,
1955. 4322

[11] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyra-
mid networks for object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2117–2125, 2017. 4321

4323



4324



4325



4326



4327



4328



4329


