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S1. More qualitative results
We provide more qualitative results in the online video

1, which consists of three parts. The first part shows the
qualitative results of our TCMR on in-the-wild videos that
have fast and diverse motions from 3DPW [14]. We also
provide the outputs rendered from the opposite view. The
second part compares the proposed TCMR with VIBE [8]
and MEVA [10]. The results are rendered on a plain back-
ground with a fixed camera to clearly compare the tempo-
ral consistency and smoothness of 3D human motion fol-
lowing MEVA [10]. The fixed camera has the fixed weak-
perspective camera parameters s and t, which are set to one
and zero, respectively. The last part provides the results of
TCMR on Internet videos. The bounding boxes of people
in the videos are tracked by a multi-person tracker that uses
YOLOv3 [12]. With the cropped images from the bounding
boxes, our TCMR processes 41 frames per second (fps) for
the video 2 with 5 people. A single NVIDIA RTX 2080Ti
GPU is used for the test.

S2. Human evaluation.
We surveyed 50 people to pick the most realistic motion

from TCMR, MEVA, and VIBE outputs on 20 sequences
of 3DPW [14] validation and test sets. TCMR, MEVA, and
VIBE got 69%, 26%, and 5% votes, respectively. The result
is coherent with the acceleration error results of the three
methods in the main manuscript.

S3. Attention values in feature integration.
During the temporal feature integration, the past and fu-

ture temporal features are weighted more than the current
temporal feature, and the variation range of each attention
value is ±20%. The past and future temporal features’ at-
tention values tend to become larger when the current pose
is difficult or the motion is fast. The attached videos plot

1https://www.youtube.com/watch?v=WB3nTnSQDII
2https://www.youtube.com/watch?v=Opry3F6aB1I

the attention values of the past, future, and current tempo-
ral features on two sequences of 3DPW [14]. The values
are written at the top-right of frames, and the sum is always
1. As the video shows, the attention value of the current
temporal feature does not drop below 0.4 when a subject is
walking in slow motion, whereas the value overall stays be-
low 0.4 when a subject is playing basketball with fast move-
ment and complex poses.

S4. Datasets
3DPW. 3DPW [14] is captured from in-the-wild and con-
tains 3D human pose and shape annotations. It consists of
60 videos and 51K video frames in total, which are cap-
tured with a phone at 30 fps. IMU sensors are leveraged
to acquire the groundtruth 3D human pose and shape. We
follow the official split protocol to train and test our model,
where train, validation, test sets consist of 24, 12, 24 videos,
respectively. Also, we report MPVPE on 3DPW because it
only has groundtruth 3D shape among the datasets we used.
We use 14 joints defined by Human3.6M [5] for evaluating
PA-MPJPE and MPJPE following the previous works [6–9].
Human3.6M. Human3.6M [5] is a large-scale indoor 3D
human pose benchmark, which consists of 15 action cate-
gories and 3.6M video frames. Following [8], our TCMR
is trained on 5 subjects (S1, S5, S6, S7, S8) and tested on
2 subjects (S9, S11). We subsampled the dataset to 25 fps
(originally 50 fps) for training and evaluation on the accel-
eration error. 14 joints defined by Human3.6M are used for
computing PA-MPJPE and MPJPE.
MPI-INF-3DHP. MPI-INF-3DHP [11] is a 3D benchmark
mostly captured from indoor environment. The train set has
8 subjects, 16 videos per subject, and 1.3M video frames
captured at 25 fps in total. It exploits a marker-less motion
capture system and provides 3D human pose annotations.

The test set contains 6 subjects performing 7 actions in
both the indoor and outdoor environment. The positional er-
rors (i.e., PA-MPJPE and MPJPE) of TCMR are measured
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Table S1: Comparison between different models using ResNet with different initialization to extract static features. All
models use the same SMPL parameter regressor pretrained by SPIN [9].

ResNet initialization remove
residual PoseForecast PA-MPJPE↓ Accel↓

ResNet with random initialization 7 7 126.5 24.3
ResNet pretrained on ImageNet [13] 7 7 103.7 65.5

ResNet from SPIN [9] 7 7 55.6 29.2
ResNet from SPIN [9] (TCMR. Ours.) 3 3 53.9 7.7

on the valid frames, which are composed of every 10th
frame approximately, using 17 joints defined by MPI-INF-
3DHP. The acceleration error is computed using all frames.
InstaVariety. InstaVariety is a 2D human dataset curated by
HMMR [7], whose videos are collected from Instagram us-
ing 84 motion-related hashtags. There are 28K videos with
an average length of 6 seconds, and OpenPose [2] is lever-
aged to acquire pseudo-groundtruth 2D pose annotations.
Penn Action. Penn Action [15] contains 2.3K video se-
quences of 15 different sports actions. It has a total of 77K
video frames annotations for 2D human poses, bounding
boxes, and action categories.
PoseTrack. PoseTrack [1] is a 2D benchmark for multi-
person pose estimation and tracking in videos. It contains
1.3K videos and 46K annotated frames in total. The videos
are captured at different fps, varying around 25 fps. We use
792 videos from the official train set, which has 2D pose
annotations for 30 frames in the middle of the video.

S5. Effect of pretrained ResNet

Due to lack of video data, our TCMR and previous
video-based methods [7, 8, 10] employ ResNet [4] pre-
trained by the single image-based 3D human pose and shape
estimation methods [6, 9] to extract static features from in-
put frames. The pretrained ResNet is trained on large-scale
in-the-wild 2D human pose datasets and provides reliable
static features. However, it is also one reason for the strong
dependency of the system on the current static feature. The
current static feature extracted by the pretrained ResNet al-
ready contains a strong cue on the current 3D human pose
and shape, leading the system to leverage temporal infor-
mation marginally.

In this regard, an alternative to our TCMR, one could
train models from scratch without using the ResNet pre-
trained by [6,9] to extract static features to reduce the strong
dependency. Table S1 compares our TCMR, the baseline
(the third row), and the models that do no use the ResNet
pretrained by SPIN [9]. As the table shows, the models that
do no use the ResNet pretrained by SPIN [9] reveal very
high per-frame 3D pose errors. This indicates that training
the models with only video data in the current literature is
not sufficient for accurate 3D human pose estimation. The
interesting part is that the model using ResNet with random

Table S2: Performance comparison between two networks
taking different input fps on 3DPW [14]. The numbers in
the second row are from Table 4 of the main manuscript.

input fps PA-MPJPE↓ Accel↓
15 53.5 15.3
30 52.7 7.1

initialization provides the highest 3D pose error but the low-
est acceleration error among the models without our TCMR.
While the high pose error attributes to the lack of train data,
the low acceleration error implies that the strong cue of the
current static feature adversely affects the temporal consis-
tency of 3D human motion.

In summary, with the insufficient video data in the cur-
rent literature, the proposed TCMR significantly improves
the temporal consistency of 3D human motion by reduc-
ing the strong dependency on the current static feature. It
also preserves the per-frame 3D pose accuracy by leverag-
ing the ResNet pretrained on large-scale in-the-wild 2D hu-
man pose datasets to extract useful static features.

S6. Effect of input fps
Table S2 shows the effect of input fps. The acceleration

error doubles when input fps reduces by half, whereas the
accuracy remains relatively the same. The result indicates
that TCMR can still fix invalid poses using relatively sparse
temporal information. The result also implies that tempo-
rally dense information is critical for temporal consistency
of outputs, which is intuitive.

S7. Pose2Mesh with temporal smoothing
We performed temporal smoothing on Pose2Mesh [3],

the state-of-the-art single image-based 3D human pose and
shape estimation method. Pose2Mesh wins the first in
MPJPE, MPVPE, and acceleration error and the second in
PA-MPJPE among single image-based methods according
to Table 6 of the main manuscript. Pose2Mesh with euro-
filter achieves PA-MPJPE 58.6, MPJPE 89.6, acceleration
error 12.9 on 3DPW. TCMR still outperforms the smoothed
Pose2Mesh by nearly twice in temporal consistency without
any post-processing.
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