
Supplementary Material for paper “Meta Batch-Instance Normalization for
Generalizable Person Re-Identification”

Seokeon Choi Taekyung Kim Minki Jeong Hyoungseob Park Changick Kim
Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

{seokeon, tkkim93, rhm033, hyoungseob, changick}@kaist.ac.kr

A. More Analysis on Hyperparameters

Meta-train loss: The total meta-train loss can be refor-
mulated as Lmtr = λscatLscat + λshufLshuf + λtrLtr. We com-
pare the performance by changing each of these weights, as
expressed in Fig. S1. We observed the highest performance
when each weight parameter was 1.0. In addition, when we
assign each weight parameter to 0 (i.e. remove the corre-
sponding loss), its performance deteriorates, which proves
that all loss components are essential. Note that when the
weights for the inter-domain shuffle lossLshuf and the triplet
loss Ltr increase, their performances can be even lower.
Thus, it is important to balance the weight parameters. For
a more detailed analysis, we investigate the changes in the
meta-train losses during the training process, as described
in Fig. S2. At the beginning of training, whereas the intra-
domain scatter loss Lscat and the inter-domain shuffle loss
Lshuf increase rapidly, the triplet loss Ltr decreases dramati-
cally. It shows that the model initially focuses on improving
discrimination power. Unlike in the early stage of training,
we observed a tendency for all three types of losses to de-
crease simultaneously. It means that our model becomes
generalized as learning progresses.

Cyclic inner-updates: We applied our cyclic inner-
updating method to diversify virtual simulations. Figure
S3 shows the performance differences over the cycle pe-
riod. We observed the highest performance in the case of
five epochs, so we set the cycle period to five epochs (i.e.
9,245 iterations). In other words, the meta-train step size β
oscillates back and forth at every five epochs.

Step size in meta-optimization: While the step size β
of inner-level optimization oscillates, the step size γ of fi-
nal meta-optimization is assigned a fixed value. Figure S4
illustrates the final distribution ratios of balancing parame-
ters according to the size of γ. As the step size increases,
the balancing parameters were biased to the instance nor-
malization. Thus, it is important to select an appropriate hy-
perparameter value considering the style variation between
domains. We selected the step size γ as 0.1 and achieved
the highest performance with it.

Figure S1. Performance comparison according to the change
of the weight parameters in the meta-train loss. We adjust each
weight parameter while fixing the other two weight parameters to
1.0.

Figure S2. The meta-train losses during the training process.

Figure S3. Analysis of a cycle period in inner-level optimization.



Figure S4. Analysis on the final distribution ratios of balancing parameters depending on the step size γ in meta-optimization.

Figure S5. Analysis on the final distribution ratios of balancing parameters according to the network structures (i.e. MobileNetV2 and
ResNet50) or training datasets (i.e. Market-1501, DukeMTMC-ReID, and large-scale domain generalization datasets).

B. More Analysis on Balancing Parameters

Different network structures and training datasets:
We compare the final distribution ratios of balancing pa-
rameters under different situations. Figure S5 (a) and (b)
show the results corresponding to network structures. While
the existing BIN method [2] normalizes instance-specific
styles only in the shallow and deep layers (Fig. 4 in the
manuscript), our MetaBIN method focuses on normalizing
styles in the overall layers excluding the last layer, regard-
less of the network architecture. Figure S5 (c) and (d) show
the final distributions of balancing parameters trained on
Market-1501 [4] and DukeMTMC-ReID [5], respectively.
At this time, we consider camera domains within a single-
source dataset as multiple-source domains. We observed
that the balancing parameters are hardly biased towards IN.
The reason is that the camera-domain discrepancy within
the single-source dataset is relatively smaller than the do-
main discrepancy between multiple-source datasets in the
large-scale DG benchmark.

Parameter changes during training: We analyze how
the balancing parameters are updated during the training
process, as shown in Fig. S6. Interestingly, the mean value
of balancing parameters in layers 1, 2, 8, and 9 dropped
sharply at the beginning, but soon rebounded. It can be ex-
plained in line with the situation in Fig. S2. At the be-
ginning of training, useless style information is removed
from layers 1, 2, 8, and 9 to improve the discrimination abil-

Figure S6. Analysis on statistical characteristics of balancing pa-
rameters for each layer during the training process.

ity rather than the generalization capability. After that, the
balancing parameters are updated to overcome the unsuc-
cessful generalization scenarios caused by the three types
of meta train losses. Eventually, the model gradually be-
comes generalized through the training process.



Table S1. Performance (%) and specification comparison under different network structures, where ‘Mem’ is the training memory usage in
our MetaBIN framework and ‘Time’ is the inference time per image when the mini-batch size is 64.

Method
Performance Specification

Average VIPeR PRID GRID i-LIDS Dim Norm Balancing All Mem Time
R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP Layers Params Params (MiB) (ms)

MobileNetV2 (w1.0) 61.9 70.1 54.8 64.0 70.2 77.8 44.2 53.2 78.5 85.3 1,280 53 17,088 2.26M 5,907 1.34
MobileNetV2 (w1.4) 64.7 72.3 56.9 66.0 72.5 79.8 49.7 58.1 79.7 85.5 1,792 53 23,822 4.34M 7,883 1.89

ResNet18 59.5 67.5 54.2 63.0 65.0 74.2 42.1 49.8 76.7 83.0 512 20 4,800 11.19M 2,473 0.80
ResNet34 62.8 71.0 57.1 66.0 73.0 79.5 43.7 54.1 77.3 84.4 512 36 8,512 21.30M 3,097 1.38
ResNet50 66.0 73.6 59.9 68.6 74.2 81.0 48.4 57.9 81.3 87.0 2,048 53 26,560 23.56M 6,885 2.63

ResNet101 68.1 75.9 61.5 70.2 77.1 83.3 52.7 62.8 81.2 87.2 2,048 104 52,672 42.61M 9,207 4.26
ResNet152 68.3 75.8 62.4 70.7 74.1 81.9 53.3 61.9 83.5 88.8 2,048 155 75,712 58.30M 12,665 5.92

C. Various architecture designs
Domain generalizable person re-identification aims to

learn a robust model for obtaining good performance on
the unseen target domain without additional updates. This
task is more useful for real-world applications since it does
not require any target images to train a model. Therefore,
we share experimental results on various network architec-
tures for practical use. Especially, we cover the variants of
MobileNetV2 [3] and ResNet [1]. Table S1 shows the per-
formance and specification corresponding to the different
network structures. We employed a single NVIDIA Titan
Xp GPU and set the input image size to 256 × 128. We
also measured the maximum memory requirement for train-
ing the MetaBIN framework and calculated the inference
time per image when a mini-batch was 64. We expect our
MetaBIN method to be actively utilized in the real-world
environment.
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