
RobustNet: Improving Domain Generalization in Urban-Scene Segmentation
via Instance Selective Whitening

A. Supplementary Material
This supplementary section provides additional quanti-

tative results to examine hyper-parameter impacts, further
implementation details, and qualitative results.

Comparison of segmentation results is shown in Fig. 1.
Our method makes reasonable predictions, while the base-
line completely fails on them.

Unseen domain imagesOurs Baseline

Figure 1. Segmentation results on BDD-100K with the models
trained on Cityscapes. The upper image contains dust and water
drops on the windshield, and the lower one has an extreme domain
shift (i.e., night and snow). Note that Cityscapes does not contain
any images taken at night or under a snow condition.

A.1. Comparison with DA methods
We compare the result of our method with those reported

from several domain adaptation (DA) methods under vari-
ous settings. Fig. 2 shows the increase in mIoU from the
baseline for each method. Although our method may not be
the top performer, it shows comparable results to other DA
methods. Note that DA methods require access to the target
domain to solve DA problems. In contrast, our method is
designed to improve generalization performance on an ar-
bitrary unseen domain under the assumption of no access
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Figure 2. Comparison of mIoU gain(%) from the baseline for
each method. Other methods compared to ours are FCN Wild [1],
CDA [5], DCAN [4], DTA [2], IBN-Net [3], and DRPC [6].

to the target domain, so we believe a comparison with DA
methods under the same setting is impossible. However, we
expect to solve DA by extending our key idea of selectively
removing style-sensitive covariances to selectively match-
ing such covariances between source and target domain.

A.2. Hyper-parameter Impacts

Criteria for separating covariance elements We adopt
k-means clustering to separate covariance elements into two
groups, domain-specific style and domain-invariant content,
according to the variance of each covariance element across
various photometric transformations such as color jittering
and Gaussian blur. As specified in Section 4.3, after divid-
ing the covariance elements into k clusters by the magni-
tude of the variance, the clusters from the first to the m-th
are considered to be insensitive, and the remaining clusters
are considered sensitive to photometric transformation. We
set m to one and search the optimal k through the hyper-
parameter search. Fig. 3 shows the threshold where the co-
variances are divided into two groups depending on the k
value. Table 1 shows the changes in mIoU performance ac-
cording to the k values, suggesting the optimal k as 3. Also,
we can see that ours (ISW) performs better than IBN-Net or
ours (IW) for all k values. Note that ours (IW) applies in-
stance whitening loss to all covariance elements, while ours

Models (GTAV) C B M S G

Baseline 28.95 25.14 28.18 26.23 73.45

Ours (ISW), k=2 35.46 35.00 39.38 27.70 72.08

Ours (ISW), k=3 36.58 35.20 40.33 28.30 72.10

Ours (ISW), k=5 34.84 33.58 39.25 27.52 72.31

Ours (ISW), k=10 33.58 33.76 38.96 27.68 72.24

Ours (ISW), k=20 33.66 33.29 38.70 27.47 72.10

Ours (IW) 33.21 32.67 37.35 27.57 72.06

Table 1. Comparison of mIoU(%) on five different validation sets
according to k value. Cityscapes (C), BDD-100K (B), Mapillary
(M), SYNTHIA (S), and GTAV (G). The models are trained on
GTAV. ResNet-50 is adopted, and an output stride of 16 is used. †

denotes re-implemented models. These experiments are conducted
three times, and the average results are reported.
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Figure 3. The curves denote the magnitude of the variance of each
covariance element across the photometric transformations. The
vertical dashed lines represent the threshold to separate the covari-
ance elements. The magnitudes of the variance are extracted from
the covariance matrix calculated in the input convolutional layer.
The y-axis is in log-scale.

(ISW) applies it to a part of the covariance elements accord-
ing to the k value.

Margin δ in instance-relaxed whitening (IRW) loss As
described in Section 4.2, we propose margin-based relax-
ation of whitening loss. Table 2 shows the performance of
ours (IRW) according to the margin δ.

Weight γ of instance-selective whitening (ISW) loss As
described in Section 4.4, we empirically set the weight γ of
the proposed ISW loss as 0.6. Table 3 shows the impact of
changing γ.

Models (GTAV) C B M S G

Baseline 28.95 25.14 28.18 26.23 73.45

Ours (IRW), δ=1/16 32.49 32.53 37.51 27.77 72.18

Ours (IRW), δ=1/32 33.30 33.17 38.03 27.43 71.96

Ours (IRW), δ=1/64 33.57 33.18 38.42 27.29 71.96

Ours (IRW), δ=1/128 32.85 32.40 37.36 27.43 72.21

Ours (IRW), δ=1/256 32.45 32.32 37.93 27.48 72.12

Ours (IW) 33.21 32.67 37.35 27.57 72.06

Table 2. Comparison of mIoU(%) on five different validation sets
according to δ value. The models are trained on GTAV train set.
ResNet-50 is adopted and an output stride of 16 is used. These
experiments are conducted three times, and the average results are
reported.

Models (GTAV) C B M S G

Ours (ISW), γ=0.4 35.60 34.07 38.98 28.10 71.96

Ours (ISW), γ=0.6 36.58 35.20 40.33 28.30 72.10

Ours (ISW), γ=0.8 35.73 34.01 39.69 27.44 71.96

Table 3. Comparison of mIoU(%) on five different validation sets
according to γ value. The models are trained on GTAV train set.
ResNet-50 is adopted and an output stride of 16 is used. These
experiments are conducted three times, and the average results are
reported.

A.3. Further Implementation Details

Fig. 4 shows the detailed architecture of the semantic
segmentation networks based on ResNet and DeepLabV3+.
We adopt the auxiliary per-pixel cross-entropy loss pro-
posed in PSPNet [6] and concatenate the low-level fea-
tures from the ResNet stage 1 to the high-level features
according to the encoder-decoder architecture proposed
in DeepLabV3+. Instance normalization (IN) with ISW
loss replaces batch normalization (BN) in the input con-
volutional layer, and these ones are added after the skip-
connection of the last residual block for each ResNet stage.
As IBN-Net [3] pointed out, earlier layers tend to encode
the style information, hence we only adopt the ISW loss to
the input convolutional layer and ResNet stage 1 and 2. In
the end, the final loss LTotal is formulated as,

LTotal = LTask (main) + γ1LTask (aux.) + γ2(
1

3

3∑
i=1

Li
ISW),

where the γ1 is 0.4 and the γ2 is 0.6. We set the batch size
to 8 for Cityscapes and 16 for GTA. For the photometric
transformation, we apply Gaussian blur and color jittering
implemented in Pytorch with a brightness of 0.8, contrast of
0.8, saturation of 0.8, and hue of 0.3.

A.4. Additional Qualitative Results

This section demonstrates additional qualitative results.
We first present the comparison of the segmentation results
on a seen domain (i.e., Cityscapes) and diverse driving con-
ditions in BDD-100K, and then show the failure cases of
our method. Besides, we show the effects of the whitening
by comparing the reconstructed images from our proposed
approach and the baseline. Finally, we provide the tendency
of images from the most sensitive and insensitive covari-
ance elements to the photometric transformation.

Comparison of segmentation results To qualitatively
describe the effect of our method, we compare the segmen-
tation results from the baseline and ours. Fig. 6 presents the
segmentation results on a seen domain (i.e., Cityscapes).
Similar to the quantitative results reported in Section 5,
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Figure 4. Detailed architecture of the segmentation model.

even with qualitative results, our model shows compara-
ble performance to the baseline model on the seen domain.
Fig. 7 shows the segmentation results under illumination
changes on an unseen domain (i.e., BDD-100K). Note that
Cityscapes dataset only contains images taken at the day-
time. The first group images are taken at the dusk. We can
see that the baseline model is vulnerable to these changes,
but in contrast, our model outputs less damaged maps and
reasonably predicts roads and cars. In extreme cases such as
at night, both models fail to predict the sky, but our method
still finds key components such as roads and cars well. In
addition, our method produces reasonable segmentation re-
sults even for drastic changes in lighting such as shadows,
as seen in the third group. Fig. 8 shows the segmentation
results under the adverse weather conditions, unseen struc-
tures, and lush vegetation. Our model successfully predicts
a partially snowy sidewalk, whereas the baseline model in-
correctly predicts it as a building. The second case in the
first group shows a foggy urban scene. The baseline fails
to cope with these weather changes, while ours still shows
fair results. Under the structural changes as shown in the
second group, our method finds the road and sidewalk bet-
ter than the baseline. Moreover, the baseline totally fails to
detect the parking lot. In the last case, which is lush vegeta-
tion, the baseline produces noisy segmentation results and
confused the road as a car. On the other hand, our model
shows reasonable performance in both cases. Fig. 5 shows
the failure cases caused by a large domain shift.

Covariance effects in images To reveal the information
that the covariance represents, we first identify the most sen-
sitive and insensitive covariances to the photometric trans-
formation. Then, we sort the BDD-100K images according
to the magnitude of the identified covariances. The results

are described in Fig. 9. In the left group, the images are get-
ting dark as the most sensitive covariance is getting smaller.
We conjecture that the corresponding covariance tends to
represent the illumination information. On the other hand,
the right group shows the sorted images along with the most
insensitive covariance. The scenes are getting simpler as the
covariance gets smaller, which implies that the most insen-
sitive covariance tends to represent the scene complexity.
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Figure 5. Comparison of failure cases of our method and the baseline.
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Figure 6. Segmentation results on seen domain images (i.e., Cityscapes).
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Figure 7. Segmentation results under illumination changes (i.e., dusk, night, and shadow) in BDD-100K with the models trained on
Cityscapes.
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Figure 8. Segmentation results under various circumstances in BDD-100K with the models trained on Cityscapes. Circumstances include
adverse weather conditions (i.e., snow and fog), unseen structures (i.e., parking lot and overpass), and vegetation.
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Figure 9. Tendency of images in BDD-100K dataset along with the covariance changes.


