
Supplementary Material

A. Derivation of Cross-Modal Embedding

In this section, we provide a complete derivation of the
objective function of shared cross-modal embedding. Based
on Eqn. (9), the KL divergence approximating the condi-
tional posteriors is written as follows:

KL(q(z|y, c)||p(z|y, c))

= −

∫

q(z|y, c) log

(

p(z|y, c)

q(z|y, c)

)

dz ≥ 0, (17)

where y and c respectively denotes the data point and condi-
tion. Assuming multiple input sources i ∈ {LiDAR, RGB,
...} are available, we derive the objective for an arbitrary
number of modalities, yielding

∑

i

KL

(

qi(z|yi, ci)||p(z|yi, ci))

)

=
∑

i

−

∫

qi(z|yi, ci) log

(

p(z|yi, ci)

qi(z|yi, ci)

)

dz ≥ 0, (18)

which is still under the premise that the KL divergence is
non-negative. We apply Baye’s theorem

p(z|y, c) =
p(y|z, c)p(z|c)

p(y|c)
(19)

to Eqn. (18) and employ

∫

q(z|y, c)dz = 1, (20)

yielding

∑

i

KL

(

qi(z|yi, ci)||p(z|yi, ci))

)

=
∑

i

(

−

∫

qi(z|yi, ci) log

(

pi(yi|z, ci)p(z|ci)

qi(z|yi, ci)

)

dz

+ log p(yi|ci)

)

≥ 0. (21)

By transferring integral to the other side, we get

∑

i

log p(yi|ci)

≥
∑

i

(
∫

qi(z|yi, ci) log

(

p(z|ci)

qi(z|yi, ci)

)

dz

+

∫

qi(z|yi, ci) log pi(yi|z, ci)dz

)

.

(22)

Therefore, the evidence lower bound of multiple data over
the conditional likelihood is given by

log

(

∏

i

p(yi|ci)

)

≥
∑

i

(

−KL(qi(z|yi, ci)||p(z|ci))

+ E∼qi(z|yi,ci)[log pi(yi|z, ci)]

)

, (23)

which completes the proof.

B. Dataset Preprocessing

B.1. Frontal View Input

Segmentation Map Frontal view RGB images (top row in
Figure. 5) are used to estimate the semantic labels in the
scene. We first run the DeepLab-V2 [5] model trained on
the Cityscapes dataset [10]. Then, we leave the background
labels with stationary structures (i.e., road, sidewalk, build-
ing, etc.) to get the background map as shown in the second
row of Figure 5. For the static stream, we directly use the
background map at the first observation time of each sce-
nario as segmentation input S to the model.
Ego-future Elimination To eliminate the effect of ego-
future from frontal view prediction, we introduce the ab-
solute coordinate where the motion of traffic agents is not
influenced by the ego-vehicle. To eliminate the ego-motion
for a dynamic stream, we define the new coordinates at the
first observation time step t = 1 for every trajectory seg-
ments Ti (of length τ + δ), and all foreground objects are
projected into this space. For this, we conduct the following
procedure. First, the point cloud in the world coordinates
is projected into the image space to grab the corresponding
RGB information. Next, we transform the point cloud to the
first frame using GPS/IMU position estimates. Finally, the
transformed point cloud is projected into the blank image
and displayed using previously acquired RGB information.
The transformed RGB images generated from this proce-
dure are shown in the third row of Figure 5.
Optical Flow Images We first locate the ground truth
bounding box in the image space. Then, we go through
ego-future elimination steps using these images with cor-
responding point clouds. Output foreground images (last
row in Figure 5) are used to compute optical flow O by run-
ning the TV-L1 [48] algorithm. The positions of each traffic
agent is also computed by this procedure. Images have a di-
mension of 414 × 125.

B.2. Top-down View Image

Segmentation Map From each trajectory segment, we grab
the segmentation label for the point cloud from the RGB-
based background map. Then, the point cloud is trans-
formed onto the top-down image space that is discretized
with a resolution of 0.5 m as illustrated in the second row

t = 1 t = 2 t = 3 t = 4 t = 5

Original
RGB images

Background
map

Transformed
RGB images

Foreground
images

with ego-future elimination

Figure 5: Frontal view input.

Original
point cloud

Background
map

Transformed
point cloud

Foreground
images

t = 1 t = 2 t = 3 t = 4 t = 5

with
ego-future
elimination

Figure 6: Top-down view input.

of Figure 6. We use the map at time t = 1 as S in top-down
view.

Ego-future Elimination Similar to frontal view images, we
first transform each point cloud to the local coordinates at
t = 1 using GPS/IMU position estimates. The transformed
point clouds are projected into the top-down view image
space with a resolution of 0.5 m. The third row of Figure 6
shows the transformed point clouds that are created using
the original point cloud in the first row of Figure 6.

Optical Flow Images The ground truth bounding box of
objects are first processed to eliminate the effect of ego-
future. Then, they are drawn in the top-down view image
space as displayed in the last row of Figure 6. The final
output has a dimension of 160 × 160 that corresponding to
80 m to the longitudinal direction and ±40 m to the lateral
direction.

B.3. Absolute vs Relative Motions in Frontal View

In Figure 8, we compare the absolute motions intro-
duced in the proposed method with the relative motions
used in other approaches. The absolute trajectory (in red
dots) is intuitive by eliminating the ego-future. In contrast,
the relative trajectory (in orange dots) is not interpretable
without extra information of future ego-motion that should
be separately predicted (as in [18]), considering the uncer-
tainty [30].

C. Additional Evaluation

C.1. Qualitative Results in Frontal View

We additionally show the qualitative results of the pro-
posed method in frontal view using the KITTI [13] dataset.
As in Figure 7, our frontal view prediction is based on the

frame 8 frame 23

frame 48 frame 56 frame 92

frame 0

observation prediction ground truth

Figure 7: Additional qualitative results evaluated using KITTI in frontal view.

Figure 8: Comparison between absolute (red trajectory) and
relative (orange trajectory) motions of a cyclist.

absolute locations (with ego-future elimination) in the local
coordinates of the first frame of each trajectory segment.
The proposed approach recognizes the road layouts and ac-
curately predict interactive future motions of different types
of road agents. Note that we visualize top-1 prediction in
this figure.

C.2. Quantitative Results in Top-down View

Table 6 shows an additional study on extra metrics.
We provide FDE at 4.0 sec with standard deviation com-
puted from five experiments. It demonstrates that our ap-
proach consistently provides robust prediction capabilities
with lower standard deviation.

C.3. Additional Top-down View Videos

We provide additional video clips (scenario1.mp4, sce-

nario2.mp4, scenario3.mp4) to visualize entire 20 predic-
tions of all traffic agents in the scene. The videos are gen-
erated using three interactive scenarios of the H3D dataset.
Please check attached videos for additional qualitative eval-
uation (Color codes: Blue - past observation, Green -
ground truth, Red - our predictions).

D. Implementation

We share details of our model architectures.

Method FDE (m) ↓

Const-Vel [40] 1.54
S-STGCNN [31] 1.49±0.0239

Trajectron++ [39] 1.63±0.0126

Ours 0.77±0.0039

Table 6: Additional study using H3D. FDE at 4.0 sec with
standard deviation is reported in meters.

D.1. Social Behavior Encoding

Input Layer for External Features We design a 3D CNN
module CNN3D to extract temporal representations fT .
This module is constructed using 4 sets of [3D conv - 1D
conv]. The first two sets have 3D conv layer with a fil-
ter size of 5×5×3 and stride of 3×3×1, and the last two
3D conv layers have a stride of 2×2×1. The final layer
merges time channels as one, which results in the output
feature of size batch×4×6×512 for frontal view and that of
batch×5×5×512 for top-down view.

The spatial features fS are extracted from the stationary
environment using a 2D CNN module CNN2D. We use 4
sets of [2D conv - 1D conv] where the filter sizes are same as
those of CNN3D without depth channel of 3D conv. Note
that we use the output of the third set as mid-level semantic
context Ωxk

τ
to capture the local environment while encod-

ing the motion of the target agent k .

Input Layer for Node Features Past motion history xk of
the target agent k is encoded into high-dimensional feature
representations Uk through MLP with 2 fully connected lay-
ers. The resulting features of size batch×512 are added to
the corresponding local perception Ωxk

τ
. We run LSTM and

use the last hidden state of size batch×512 to initialize the
node feature of the agent k, hk

(0).

For the rest of agents, we follow the similar procedure
using MLP and LSTM with the relative motion information.
Each individual last hidden state of size batch×512 is used
to initialize hj

(0) ∀j ∈ {1, ...,K} \ {k}.

GNN Layer The message generation is implemented using
three layers of MLP, all with size 256. We use an additional
layer of MLP with a same size during the readout phase.

D.2. Cross-Modal Embedding

Encoder The ground-truth future motion yk of size
batch×10×2 is first reshaped to batch×20 and processed
through six fully connected layers, each with output size
1024, 6400, 25600, 6400, 1024, and 512. Each layer has a
subsequent leaky ReLU layer, and the intermediate features
are conditioned by ck. From the output of the penultimate
layer, the first 256 dimension is used as mean and the next
256 dimension is used as standard deviation.
Decoder The sampled latent variable is decoded through
the 8 fully connected layers. The output size is 1024, 6400,
25600, 102400, 25600, 6400, 1024, and 20, respectively.
All layers come together with a ReLU activation function,
and each intermediate output is conditioned by ck.

