
Supplementary Material

1. Implementation Details

1.1. Pre-processing Details

This section introduces the details of generating our
clothing-agnostic person representation. To remove the de-
pendency on the clothing item originally worn by a person,
regions that can provide any original clothing information,
such as the arms that hint at the sleeve length, should be
eliminated. Therefore, when generating a clothing-agnostic
image Ia, we remove the arms from the reference image I .
For the same reason, legs should be removed if the pants
are the target clothing items. We mask the regions with a
gray color, so that the masked pixels of the normalized im-
age would have a value of 0. We add padding to the masks
to thoroughly remove these regions, and the width of the
padding is empirically determined.

1.2. Model Architectures

This section introduces the architectures of the seg-
mentation generator, the geometric matching module, and
ALIAS generator in detail.

Segmentation Generator. The segmentation generator
has the structure of U-Net [6], which consists of convolu-
tional layers, downsampling layers, and upsampling lay-
ers. Two multi-scale discriminators [9] are employed for
the conditional adversarial loss. The details of the segmen-
tation generator architecture are shown in Fig. 1.

Geometric Matching Module. The geometric matching
module consists of two feature extractors and a regression
network. A correlation matrix is calculated from the two
extracted features, and the regression network predicts the
TPS parameter θ with the correlation matrix. The feature
extractor is composed of a series of convolutional layers,
and the regression network consists of a series of convolu-
tional layers followed by a fully connected layer. The de-
tails are shown in Fig. 2.

ALIAS Generator. The architecture of the ALIAS gen-
erator consists of a series of ALIAS ResBlks with nearest-
neighbor upsampling layers. We employ two multi-scale
discriminators with instance normalization. Spectral nor-
malization [4] is applied to all the convolutional layers.
Note that we separately standardize the activation based
on the misalignment mask Mmisalign only in the first five

ALIAS ResBlks. The details of the ALIAS generator archi-
tecture is shown in Fig. 3.

1.3. Training Details

This section introduces the losses and the hyperparame-
ters for the segmentation generator, the geometric matching
module, and the ALIAS generator.

Segmentation Generator. The segmentation genera-
tor GS uses the clothing-agnostic segmentation map Sa,
the pose map P , and the clothing item c as inputs (Ŝ =
GS(Sa, P, c)) to predict the segmentation map Ŝ of the
person in the reference image wearing the target cloth-
ing item. The segmentation generator is trained with the

Figure 1: Segmentation Generator. k×k Conv (x) denotes a
convolutional layer where the kernel size is k and the output
channel is x. Also, ConvBlk (x) denotes a block, which
consists of two series of 3×3 convolutional layer, instance
normalization, and ReLU activation.



Figure 2: Geometric Matching Module. k × k ↓2 Conv (x)
denotes a convolutional layer where the kernel size is k, the
stride is 2, and the output channel is x.

cross-entropy loss LCE and the conditional adversarial loss
LcGAN , which is LSGAN loss [3]. The full loss LS for the
segmentation generator are written as

LS = LcGAN + λCELCE (1)

LCE = − 1

HW

∑
k∈C,y∈H,x∈W

Sk,y,x log(Ŝk,y,x) (2)

LcGAN = E(X,S)[log(D(X,S))]

+ EX [1− log(D(X, Ŝ))],
(3)

where λCE is the hyperparameter for the cross-entropy loss.
In the experiment, λCE is set to 10. In Eq. (2), Syxk and
Ŝyxk indicate the pixel values of the segmentation map of
the reference image S and Ŝ corresponding to the coordi-
nates (x, y) in channel k. The symbols H , W and C indi-
cate the height, width, and the number of channels of S. In
Eq. (3), the symbol X indicates the inputs of the generator
(Sa, P, c), and D denotes the discriminator.

The learning rate of the generator and the discriminator
is 0.0004. We adopt the Adam optimizer with β1 = 0.5
and β2 = 0.999. We train the segmentation generator for
200,000 iterations with the batch size of 8.

Geometric Matching Module. The inputs of the geo-
metric matching module are c, P , clothing-agnostic image
Ia, and Ŝc, which is the clothing area of Ŝ. The output is

Figure 3: ALIAS Generator. The segmentation map S and
the misalignment mask Mmisalign are passed to the gener-
ator through the proposed ALIAS ResBlks.

the TPS transformation parameters θ. The overall objective
function is written as

Lwarp = ||Ic −W(c, θ)||1,1 + λconstLconst (4)

Lconst =
∑
p∈P

| (| ||pp0||2 − ||pp1||2|+ | ||pp2||2 − ||pp3||2|)

+(|S(p, p0)− S(p, p1)|+ |S(p, p2)− S(p, p3)|),
(5)

whereW is the function that deforms c using θ, and Ic is the
clothing item extracted from the reference image I . Lconst

is a second-order difference constraint [10], and λconst is
the hyperparameter for Lconst. In the experiment, we set
λconst to 0.04. In Eq. (5), the symbol p indicates a sam-
pled TPS control point from the entire control points set P,
and p0, p1, p2, and p3 are top, bottom, left and right point
of p, respectively. The function S(p, pi) denotes the slope
between p and pi.

The learning rate of the geometric matching module is
0.0002. We adopt the Adam optimizer with β1 = 0.5 and
β2 = 0.999. We train the geometric matching module for
50,000 iterations with the batch size of 8.

ALIAS Generator. The loss function of ALIAS gener-
ator follows those of SPADE [5] and pix2pixHD [9], as it



Figure 4: Qualitative comparisons of TPS transformation
with various grid numbers and the flow estimation from
ClothFlow.

Method Warp-SSIM↑ MACs↓ Mask-SSIM↑

ClothFlow 0.841? 8.13G 0.803?

VITON-HD 0.782 4.47G 0.852

Table 1: ? denotes a score taken from the ClothFlow paper,
and we train VITON-HD in the same setting (e.g., dataset
and resolution). We compute MACs of their warping mod-
ules at 256×192.

contains the conditional adversarial lossLcGAN , the feature
matching loss LFM , and the perceptual loss Lpercept. Let
DI be the discriminator, I and c be the given reference and
target clothing images, and Î be the synthetic image gener-
ated by the generator. Sdiv is the modified version of the
segmentation map S. The full loss LI of our generator is
written as

LI = LcGAN + λFMLFM + λperceptLpercept (6)

LcGAN = EI [log(DI(Sdiv, I))]

+ E(I,c)[1− log(DI(Sdiv, Î))]
(7)

LFM = E(I,c)

T∑
i=1

1

Ki
[||D(i)

I (Sdiv, I)−D(i)
I (Sdiv, Î)||1,1]

(8)

Lpercept = E(I,c)

V∑
i=1

1

Ri
[||F (i)(I)− F (i)(Î)||1,1], (9)

where λFM and λpercept are hyperparameters. In the ex-
periment, both λFM and λpercept are set to 10. T is the
number of layers in DI , and D(i)

I and Ki are the activa-
tion and the number of elements in the i-th layer of DI ,
respectively. Similarly, V is the number of layers used in
the VGG network F [7], and F (i) and Ri are the activation
and the number of elements in the i-th layer of F , respec-
tively. We replace the standard adversarial loss with the
Hinge loss [11].

The learning rate of the generator and the discriminator
is 0.0001 and 0.0004, respectively. We adopt the Adam op-
timizer [2] with β1 = 0 and β2 = 0.9. We train the ALIAS
generator for 200,000 iterations with the batch size of 4.

2. Additional Experiments

2.1. Comparison with ClothFlow

To demonstrate that the optical flow estimation does not
solve the misalignment completely, we re-implement the
flow estimation module of ClothFlow [1] based on the orig-
inal paper. Fig. 4 shows that the misalignment still occurs,
although both TPS with a higher grid number (e.g., a 10×10
or 20×20 grid) and the flow estimation module of Cloth-
Flow can reduce the misaligned regions. The reason is that
the regularization to avoid the artifacts (e.g., TV loss) pre-
vents the warped clothes from fitting perfectly into the tar-
get region. In addition, we evaluate the accuracy and the
computational cost of warping modules in VITON-HD and
ClothFlow with Warp-SSIM [1] and MACs, respectively.
We also measure how well the models reconstruct the cloth-
ing using Mask-SSIM [1]. Table 1 shows that the ClothFlow
warping module has the better accuracy than ours, whereas
the higher Mask-SSIM in VITON-HD proves that ALIAS
normalization is more effective at solving the misalignment
problem than the improved warping method. We found that
the ClothFlow warping module needs a huge computational
cost (MACs: 130.03G) at 1024×768, but the cost could be
reduced when predicting the optical flow map at 256×192.
Table 1 demonstrates that the ClothFlow warping module
still needs more computational cost than ours, yet it is a
viable option to combine the flow estimation module with
ALIAS generator.

Figure 5: User study results. We compare our model with
CP-VTON [8] and ACGPN [10].



Figure 6: Failure cases of VITON-HD.

2.2. User Study

We further evaluate our model and other baselines via
a user study in the unpaired setting. We randomly select
30 sets of a reference image and a target clothing image
from the test dataset. Given the reference images and the
target clothes, the users are asked to rank the 1024×768
outputs of our model and baselines according to the follow-
ing questions: (1) Which image is the most photo-realistic?
(2) Which image preserves the details of the target cloth-
ing the most? As shown in Fig. 5, it can be observed that
our approach achieves the rank 1 votes more than 88% for
the both questions. The result demonstrates that our model
generates more realistic images, and preserves the details of
the clothing items compared to the baselines.

2.3. Qualitative Results

We provide additional qualitative results to demonstrate
our model’s capability of handling high quality image syn-
thesis. Fig. 7, 8, 9, and 10 show the qualitative compar-
ison of the baselines across different resolutions. Fig. 11,
12, 13, and 14 show additional results of VITON-HD at
1024×768 resolution.

3. Failure Cases and Limitations
Fig. 6 shows the failure cases of our model caused by the

inaccurately predicted segmentation map or the inner col-
lar region indistinguishable from the other clothing region.
Also, the boundaries of the clothing textures occasionally
fade away.

The limitations of our model are as follows. VITON-HD
is trained to preserve the bottom clothing items, limiting
the presentation of the target clothes (e.g., whether they are
tucked in). It can be a valuable future direction to gener-
ate multiple possible outputs from a single input pair. Next,
our dataset mostly consists of slim women and top cloth-
ing images, which makes VITON-HD handle only a limited
range of body shapes and clothing during the inference. We
believe that VITON-HD has the capability to cover more
diverse cases when the images of various body shapes and
clothing types are provided. Finally, existing virtual try-on
methods including VITON-HD do not provide robust per-
formance for in-the-wild images. We think generating real-
istic try-on images for the in-the-wild images is an interest-
ing topic for future work.



Figure 7: Qualitative comparison of the baselines (256×192).

Figure 8: Qualitative comparison of the baselines (512×384).



Figure 9: Qualitative comparison of the baselines (1024×768).



Figure 10: Qualitative comparison of the baselines (1024×768).



Figure 11: Additional qualitative results of VITON-HD.



Figure 12: Sample 1 of VITON-HD. (Left) The synthetic image. (Right) The reference image and the target clothing item.



Figure 13: Sample 2 of VITON-HD. (Left) The synthetic image. (Right) The reference image and the target clothing item.



Figure 14: Sample 3 of VITON-HD. (Left) The synthetic image. (Right) The reference image and the target clothing item.
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