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We include additional materials in this document. We

describe additional details on PCME to complement the

main paper (§A). Various probabilistic distances are intro-

duced (§B). We provide the experimental protocol details

(§C), ablation studies (§D), and additional results (§E). Fi-

nally, more uncertainty analyses are shown (§F).

A. More details for PCME

In this section, we provide details for PCME.

A.1. The uniformity loss

Recently, Wang et al. [17] proposed the uniformity loss

which enforces the feature vectors to distribute uniformly

on the unit hypersphere. In Wang et al. [17], the uniformity

loss was shown to lead to better representations for L2 nor-

malized features. Since our µ vectors are projected to the

unit L2 hypersphere, we also employ the uniformity loss to

learn better representations. We apply the uniformity loss

on the joint embeddings Z “ tv1
1
, t1

1
, . . . , vJB , t

J
Bu in the

mini-batch size of B as follows:

LUnif “
ÿ

z,z1PZˆZ

e´2}z´z1}2
2 . (A.1)

A.2. Connection between the soft contrastive loss
and the MIL objective of PVSE

In the main text, we presented an analysis based on gra-

dients to study how the loss function in Equation (1) handles

plurality in cross-modal matches and learns uncertainties in

data. Here we make connections with the MIL loss used by

PVSE (§3.1.1, [16]); this section follows the corresponding

section in the main paper.

To build connections with PVSE, consider a one-hot

weight array wjj1 where, given that pv, tq is a positive pair,

the “one” value is taken only by the single pair pj, j1q whose

distance is smallest. Define wjj1 for a negative pair pv, tq
conversely. Then, we recover the MIL loss used in PVSE,

where only the best match among J2 predictions are uti-

lized. As we see in the experiments, our softmax weight

scheme provides more interpretable and performant super-

vision for the uncertainty than the argmax version used by

PVSE.

B. Probabilistic distances

We introduce probabilistic distance variants to mea-

sure the distance between two normal distributions p “
N pµ1, σ

2

1
q and q “ N pµ2, σ

2

2
q. All distance functions are

non-negative and become zero if and only if two distribu-

tions are identical. Extension to multivariate Gaussian dis-

tributions with diagonal variance can be simply derived by

taking the summation over the dimension-wise distances.

Kullback–Leibler (KL) divergence measures the dif-

ference between two distributions as follows:

KLpp, qq “

ż

log
p

q
dp

“
1

2

„

log
σ2

2

σ2

1

`
σ2

1

σ2

2

`
pµ1 ´ µ2q2

σ2

2



.

(B.1)

KL divergence is not a metric because it is asymmetric

(KLpp, qq ‰ KLpq, pq) and does not satisfy the triangu-

lar inequality. If q has a very small variance, nearly zero,

the KL divergence between p and q will be explored. In

other words, if we have a very certain embedding, which

has nearly zero variance, in our gallery set, then the cer-

tain embedding will be hardly retrieved by KL divergence

measure. In the latter section, we will show that KL diver-

gence leads to bad retrieval performances in the real-world

scenario.

Jensen-Shannon (JS) divergence is the average of for-

ward (KLpp, qq) and reverse (KLpq, pq) KL divergences.

Unlike KL divergence, the square root of JS divergence is a

metric function.

JSpp, qq “
1

2
rKLpp, qq ` KLpq, pqs . (B.2)

Like KL divergence, JS divergence still has division term

by variances σ1, σ2, it can be numerically unstable when

the variances are very small.

Probability product kernels [9] are generalized inner

product for two distributions, that is:

PPKpp, qq “

ż

ppzqρqpzqρdz. (B.3)
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When ρ “ 1, it is called the expected likelihood kernel

(ELK), and when ρ “ 1{2, it is called Bhattacharyya’s

affinity [1], or Bhattacharyya kernel.

Expected likelihood kernel (ELK) is a special case of

PPK when ρ “ 1 in Equation (B.3). In practice, we take log

to compute ELK as follows:

ELKpp, qq “
1

2

„

pµ1 ´ µ2q2

σ2

1
` σ2

2

` logpσ2

1
` σ2

2
q



. (B.4)

Bhattacharyya kernel (BK) is another special case of

PPK when ρ “ 1{2 in Equation (B.3). The log BK is de-

fined as follows:

BKpp, qq “
1

4

„

pµ1 ´ µ2q2

σ2

1
` σ2

2

` 2 logp
σ2

σ1

`
σ1

σ2

q



. (B.5)

Wasserstein distance is a metric function of two dis-

tributions on a given metric space M . The Wasser-

stein distance between two normal distributions on R
1, 2-

Wasserstein distance, is defined as follows:

W pp, qq2 “ pµ1 ´ µ2q2 ` σ1 ´ σ2
2. (B.6)

C. Experimental Protocol Details

We introduce the cross-modal retrieval benchmarks con-

sidered in this work. We discuss the issues with the current

practice for the evaluation and introduce new alternatives.

C.1. Plausible Match R­Precision (PMRP) details

In this work, we seek more reliable sources of pairwise

similarity measurements through class and attribute labels

on images. For example, on the CUB caption dataset, we

have established the positivity of pairs by the criterion that

a pair pi, cq is positive if and only if both elements in the

pair belong to the same bird class. Similarly, on the COCO

caption dataset, we judge the positivity through the multi-

ple class labels (80 classes total) attached per image: a pair

pi, cq is positive if and only if the binary class vectors for

the two instances, yi, yc P t0, 1u80, differ at most at ζ po-

sitions (Hamming Distance). In MS-COCO 5k test images,

48 images do not have instance labels; we omit them during

the evaluation. Note that because we use R-Precision, the

ratio of positive items in top-r retrieved items where r is the

number of the ground-truth matches, increasing ζ will make

r larger, and will penalize methods more, which retrieve ir-

relevant items.

In Figure C.1, we visualize the number of distinct cat-

egories per image in the MS-COCO validation set. In the

figure, we can observe that about the half of the images

have more than two categories. To avoid penalty caused

by almost neglectable objects (as shown in Figure C.2), we

set ζ “ 2 for measuring the PMRP score. For PMRP with

different ζ rather than 2, results can be found in §E.
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Figure C.1. Number of distinct categories in MS-COCO vali-

dation set. Images that have more than 10 categories are omitted.

C.2. Implementation details

Common. As in Faghri et al. [6], we use ResNet [7] pre-

trained on ImageNet and the pre-trained GloVe with 2.2M

vocabulary [14] for initializing the visual and textual en-

coders (fV , fT ). We first warm-up the models by training

the head modules for each modality, with frozen feature ex-

tractors. Afterwards, the whole parameters are fine-tuned

in an end-to-end fashion. We use the ResNet-152 backbone

with embedding dimension D “ 1024 for MS-COCO and

ResNet-50 with D “ 512 for CUB. For all experiments, we

set the number of samples J “ 7 (the detailed study is in

§E). We use AdamP optimizer [8] with the cosine learning

rate scheduler [12] for stable training.

MS-COCO. We follow the evaluation protocol of [10]

where the validation set is added to the training pool (re-

ferred to as rV in [5, 6]). Our training and validation splits

contain 113,287 and 5,000 images, respectively. We report

results on both 5K and (the average over 5-fold) 1K test sets.

Hyperparameter search protocol. We validate the initial

learning rate, number of epochs for the warm-up and fine-

tuning, and other hyperparameters on the 150 CUB training

classes and the MS-COCO caption validation split. For MS-

COCO, we use the initial learning rate as 0.0002, 30 warm-

up and 30 finetune epochs. Weights for regularizers LKL

and LUnif are set to 0.00001 and 0, respectively. For CUB

Caption, the initial learning rate is 0.0001, the number of

warm-up epochs 10 and fine-tuning epochs 50. Weights for

regularizers LKL and LUnif are set to 0.001 and 10, respec-

tively. For both datasets, models are always trained with

Cutout [4] and random caption dropping [2] augmentation

strategies with 0.2 and 0.1 erasing ratios, respectively. The

initial values for a, b in Equation (3) are set to -15 and 15

for COCO (-5 and 5 for CUB), respectively.
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a man that is standing in the dirt with a bat.

a baseball player is in the middle of his swing

as the catcher is ready to catch the ball.

a baseball player hitting the ball away

from the catcher.

a batter at a baseball game swinging his bat.

a baseball player swinging a bat over a base.

a baseball player is ready to swing at the ball as

the catcher and umpire crouch behind him.

a baseball batter takes a swing at a baseball.

a man is swinging a bat at a ball.

the mets batter swings and hopefully makes contact

a baseball player swinging a bat over home plate.

three uniformed baseball players on a field together.

a baseball player holding a bate near home base.

some baseball players are playing baseball on a field

johnny gomes (#5) stands in for the red sox

a group of men playing baseball on a field.

one of the twins baseball players is up to bat.

a baseball player in the batter's box during a game.

professional athlete preparing to take swing at

ball during game.

a baseball batter is smiling as he prepares to swing

at home plate.

a baseball player standing next to home base with a bat.

ζ = 0 ζ = 1 ζ = 2

Figure C.2. MS-COCO plausible match examples. The plausible examples of the most left instance from ζ “ 0 to ζ “ 2. The contained

instance classes, ζ, figure and captions are shown.

C.3. CUB 2D toy experiment details

We select nine bird classes from CUB caption; three

swimming birds (“Western Grebe”, “Pied Billed Grebe”,

“Pacific Loon”), three small birds (“Vermilion Flycatcher”,

“Black And White Warbler”, “American Redstart”), and

three woodpeckers (“Red Headed Woodpecker”, “Red Bel-

lied Woodpecker”, “Downy Woodpecker”).

We slightly modify PCME to learn 2-dimensional em-

beddings. For the image encoder, we use the same structure

as the other experiments, but omitting the attention modules

from the µ and σ modules. For the caption encoder, we train

1024-dimensional bi-GRU on top of GloVe vectors and ap-

ply two 2D projections to get the 1024 dimensional µ and

σ embedding. The other training details are the same as the

other CUB caption experiments.

D. Ablation studies

We provide ablation studies on PCME for regularization

terms, σ module architectures, the number of samples J

during training, and embedding dimension D.

Regularizing uncertainty. PCME predicts probabilistic

outputs. We have considered uncertainty-specific regular-

ization strategy in the main paper, the information bottle-

neck loss LKL and the uniform loss LUnif. We study the ben-

efits of those ingredients. Table D.1 shows our results. We

report cross-validated MAP@R [13] on the 150 class train-

ing CUB caption datasets. The KL loss increases the sigma

values to a meaningful range (from e´13.01 « 2.2ˆ10´6 to

e´3.84 « 0.02. The uniformity loss prevents the uncertainty

from collapsing and slightly improves performances.

i2t t2i Image Caption

LKL LUnif MAP@R MAP@R Erlog σs Erlog σs

✗ ✗ 10.56 13.32 -13.01 -8.77

✓ ✗ 10.57 13.77 -3.84 -3.89

✗ ✓ 10.56 13.31 -11.26 -7.59

✓ ✓ 10.65 13.84 -3.63 -3.64

Table D.1. Regularization for uncertainty. Cross-validated

MAP@R performances on CUB training set, with and without KL

and uniformity loss terms. The scale estimate Erlog σs is an aver-

aged value over the σ dimensions as well as the validation samples.

Method DoF(σ) i2t t2i

PCME µ only 0 24.7 25.6

PCME isotropic 1 25.7 26.0

PCME 512 26.3 26.8

Table D.2. DoF for σ. R-Precision on the CUB Caption test set.

DoF for σ. Though by default we parametrize the full di-

agonal elements of the covariance matrix Σ P R
DˆD with

the vector σ P R
D, one may parametrize σ more cheaply

via e.g. a scalar, by restricting the embedding distribution

family to isotropic Gaussians. Table D.2 shows the trade-

off between the degree of freedom (DoF) for σ and the

R-Precision of PCME. Indeed, allowing greater degrees of

freedom for σ brings better performance. Figure D.1 shows

the average variance values for each dimension, which sup-

ports that the learned variances require high DoF.

Architecture study. Table D.3 shows the architecture de-

sign comparisons for PCME on CUB Caption test split. In

the table, applying local attention to both µ and σ modules

performs the best. Furthermore, we ablate sigmoid and LN
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Figure D.1. How isotropic are variances? Sorted values of vari-

ance are compared against the trained values of isotropic PCME.

Results on CUB test set.

µ σ I-to-T T-to-I

local attention local attention R-Precision R-Precision

✗ ✗ 25.60 25.85

✗ ✓ 24.65 25.15

✓ ✗ 25.01 25.52

✓ ✓ 26.28 26.77

sp¨q & LN in σ module I-to-T R-Precision T-to-I R-Precision

✓ 23.81 24.58

✗ 26.28 26.77

Table D.3. Architectures for µ and σ. Architecture design

choices comparison on CUB caption test split.
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Figure D.2. Number of samples. The cross-validated PCME per-

formances against the number of samples J during training.

parts of σ modules, which can restrict the representation of

variances. As a result, limiting representations by sigmoid

and layer norm harms the final performances.

Number of samples during training. In Figure D.2, we

report the cross-validated mean R-Precision scores by vary-
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Figure D.3. Embedding dimensions. The PCME performance

against the embedding dimensions D.

PCME
variant Sampling

Test-time
Similarity Metric

Space

complexity
i2t

R-P
t2i

R-P

µ only ✗ Mean only OpNq 24.70 25.64

PCME

✗ Mean only OpNq 26.14 26.67

✗ KL-divergence Op2Nq 21.99 20.92

✗ JS-divergence Op2Nq 25.06 25.55

✗ ELK Op2Nq 25.33 25.87

✗ Bhattacharyya Op2Nq 24.93 25.27

✗ 2-Wasserstein Op2Nq 26.16 26.69

✓ Average L2 OpJ2Nq 26.11 26.64

✓ Match prob OpJ2Nq 26.28 26.77

Table E.1. Pairwise distances for distributions. There are many

options for computing the distance between two distributions.

What are the space complexity and retrieval performances for each

option? R-P stands for the R-Precision.

ing the number of samples J during training. In the figure,

we observe that larger J leads to higher performances. In

practice, we choose J “ 7 for computation budgets.

Embedding dimensions. Performances against different

embedding space dimensions for PCME µ only and PCME

are illustrated in Figure D.3. In all embedding dimensions,

our stochastic approach (PCME) consistently outperforms

the deterministic approach (PCME µ only).

E. More results

In this section, we provide additional experimental re-

sults for PCME on CUB Caption and COCO Caption.

E.1. More results on similarity measures for re­
trieval at test time

In Table E.1, we report the full retrieval results obtained

by the different distribution distances discussed in §B. As

discussed in §B, KL-divergence even shows worse results

than the “Mean only” baseline, a non-probabilistic distance.
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Figure E.1. Comparison of different retrieval strategies.

We also report the performances against the number of sam-

ples of matching probability in Figure E.1. In the figure, the

matching probability strategy shows better results than non-

sampling strategies from J “ 3, and larger J leads to better

performances. Due to the computation complexity, we use

J “ 7 in Table E.1.

E.2. Discussion on hardest negative mining

Since Recall@K is widely used for the evaluation of

many cross-modal retrieval tasks, many recent cross-modal

retrieval methods optimize Recall@1 directly by the hardest

negative mining (HNM) strategy [6], that is:

max
t1

rα ` simpv, t1q ´ simpv, tqs

`max
v1

rα ` simpv1, tq ´ simpv, tqs,
(E.1)

where sim is the cosine similarity. This strategy neglects

all other possible positive candidates, but only considers

the most similar positive and negative pairs. To reveal that

HM strategy disadvantages to learn the global structure, we

measure two metrics on CUB caption, R-Precision and Re-

call@1. For non-HM strategy, we replace max to
ř

in

Equation (E.1). Figure E.2 shows R-Precision and recall@1

performances with different mining strategies. In the fig-

ure, PVSE with HNM strategy shows higher Recall@1 by

increasing the number of embeddings K (36.3 Ñ 37.6 Ñ
41.1), but at the same time, it reduces the R-Precision scores

(21.4 Ñ 20.4 Ñ 19.2). On the other hand, for all K, Non-

HNM strategy PVSE results show worse R@1 than HNM

results but achieves higher R-Precision performances. In

Table 3, we show that this phenomenon is also observed in

MS-COCO by measuring PMRP scores.

E.3. Full results for CUB and COCO

CUB Caption. We report the full results on CUB Caption

test data for unseen 50 classes and seen 150 classes in Ta-

ble E.2 and Table E.3, respectively. In both splits, PCME

shows the best R-Precision performances against baselines.
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Hardest negative mining (HNM)
PCME

Figure E.2. Hardest negative mining (HNM) vs. Non-HNM.

Method HNM
Image-to-text Text-to-image

R-P R@1 R-P R@1

VSE0 ✗ 22.35 44.19 22.57 32.71

PVSE K=1 ✗ 22.65 43.11 22.78 33.49

PVSE K=2 ✗ 21.62 44.05 21.49 31.31

PVSE K=4 ✗ 21.12 40.51 20.90 30.94

PVSE K=1 ✓ 22.34 40.88 20.51 31.71

PVSE K=2 ✓ 19.67 47.29 21.16 27.98

PVSE K=4 ✓ 18.38 47.76 19.94 34.39

PCME µ only ✗ 24.70 46.38 25.64 35.50

PCME ✗ 26.28 46.92 26.77 35.22

Table E.2. Comparison on CUB Caption unseen 50 class test

set. R-P and R@1 stand for R-Precision and Recall@1, respec-

tively. The usage of the hardest negative mining (HNM) is indi-

cated.

Method HNM
Image-to-text Text-to-image

R-P R@1 R-P R@1

VSE0 ✗ 19.85 40.88 18.72 25.51

PVSE K=1 ✗ 19.69 40.65 18.72 25.58

PVSE K=2 ✗ 18.84 41.45 17.72 24.99

PVSE K=4 ✗ 18.31 38.08 17.21 23.54

PVSE K=1 ✓ 18.98 38.77 18.23 23.49

PVSE K=2 ✓ 17.62 44.24 17.71 22.78

PVSE K=4 ✓ 17.47 44.98 17.44 26.19

PCME µ only ✗ 20.65 42.70 20.16 26.94

PCME ✗ 20.87 43.10 20.37 26.47

Table E.3. Comparison on CUB Caption seen 150 class test set.

R-P and R@1 stand for R-Precision and Recall@1, respectively.

The usage of the hardest negative mining (HNM) is indicated.

COCO Caption. We report the full results on MS-COCO

Caption 1k test images and 5k test images in Table E.4 and

Table E.5, respectively. We also report additional exper-

iments on PVSE such as larger K (K “ 4), a different
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Method D
Image-to-text Text-to-image

PMRP R@1 R@5 R@10 PMRP R@1 R@5 R@10

VSE++ BMVC’18 [6] 1024 - 64.6 90.0 95.7 - 52.0 84.3 92.0

PVSE K=1 CVPR’19 [16] 1024 40.3˚ 66.7 91.0 96.2 41.9˚ 53.5 85.1 92.7

PVSE K=2 CVPR’19 [16] 1024 ˆ 2 42.8˚ 69.2 91.6 96.6 43.7˚ 55.2 86.5 93.7

PVSE K=4 CVPR’19 [16] 1024 ˆ 4 41.5* 68.0 91.9 96.6 42.7* 54.1 85.5 92.9

PVSE K=1 + SHM [15] 1024 ˆ 1 41.6* 66.1 91.4 96.4 42.4* 53.6 85.5 93.0

PVSE K=2 + SHM [15] 1024 ˆ 2 39.0* 65.1 90.9 96.5 39.4* 53.1 85.4 93.0

VSRN ICCV’19 [11] 2048 41.2˚ 76.2 94.8 98.2 42.4˚ 62.8 89.7 95.1

VSRN + AOQ ECCV’20 [3] 2048 ˆ 2 44.7˚ 77.5 95.5 98.6 45.6˚ 63.5 90.5 95.8

PCMEµ only 1024 45.0* 68.0 92.0 96.2 45.9* 54.6 86.3 93.8

PCME 1024 ˆ 2 45.1* 68.8 91.6 96.7 46.0* 54.6 86.3 93.8

Table E.4. 1K MS-COCO results. Plausible Match R-Precision (PMRP), Recall@K results on MS-COCO 1k test images. “˚” denotes

results produced by the published models.

Method D
Image-to-text Text-to-image

PMRP R@1 R@5 R@10 PMRP R@1 R@5 R@10

VSE++ BMVC’18 [6] 1024 - 41.3 71.1 81.2 - 30.3 59.4 72.4

PVSE K=1 CVPR’19 [16] 1024 29.3˚ 41.7 73.0 83.0 30.1˚ 30.6 61.4 73.6

PVSE K=2 CVPR’19 [16] 1024 ˆ 2 31.8˚ 45.2 74.3 84.5 32.0˚ 32.4 63.0 75.0

PVSE K=4 CVPR’19 [16] 1024 ˆ 4 30.5* 43.0 72.8 83.6 31.0* 31.2 61.5 74.4

PVSE K=1 + SHM [15] 1024 ˆ 1 30.6* 41.1 71.6 82.7 30.8* 30.9 60.8 73.7

PVSE K=2 + SHM [15] 1024 ˆ 2 28.1* 40.7 70.8 81.9 27.8* 29.9 60.4 73.4

VSRN ICCV’19 [11] 2048 29.7˚ 53.0 81.1 89.4 29.9˚ 40.5 70.6 81.1

VSRN + AOQ ECCV’20 [3] 2048 ˆ 2 33.0˚ 55.1 83.3 90.8 33.5˚ 41.1 71.5 82.0

PCMEµ only 1024 34.0* 43.5 73.1 84.2 34.3* 31.7 62.2 74.9

PCME 1024 ˆ 2 34.1* 44.2 73.8 83.6 34.4* 31.9 62.1 74.5

Table E.5. Comparison on 5K MS-COCO. Plausible Match R-Precision (PMRP), Recall@K results on MS-COCO 5k test images. “˚”

denotes results produced by the published models.

negative mining strategy (semi-hard negative mining [15].

In the tables, although PCME shows slightly worse R@1

results than PVSE K=2, PCME outperforms PVSE K=2 in

PMRP scores.

Also, we report PMRP scores of four methods

(PVSE [16], VSRN [11], VSRN + AOQ [3] and PCME)

by varying ζ for PMRP in Figure E.3. In the figure, PMRP

scores for VSRN and VSRN + AOQ are getting worse by

increasing ζ, in other words, theses method shows less co-

herence if we allow one missing or altering object class in

the retrieved items. On the other hand, PCME shows even

increased performance with ζ ą 0, in other words, PCME

retrieves more plausible items than other methods.

F. More uncertainty analysis

Uncertainty estimation by PCME brings interesting in-

sights for the cross-modal retrieval tasks. In this section,

we show additional uncertainty analysis for PCME.
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 vs. PMRP
PVSE K=2
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VSRN + AOQ
PCME

Figure E.3. PMRP by varying ζ. Plausible Match R-Precision

scores for four methods with ζ “ t0, 1, 2u.

F.1. Corruption vs. uncertainty in MS­COCO

As Figure 7, we illustrate the uncertainty level by vary-

ing corruption levels on pixels and words in Figure F.1. The
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Figure F.1. σ captures ambiguity in COCO Caption. Average

log σ values at different ratios of erased pixels (for images) and

appended ăunką tokens (for captions).

left figure shows the uncertainty levels against occluded

pixels. As we expected, more occlusion leads to higher

uncertainty. The right figure shows the uncertainty levels

against the number of appended ăunką tokens.

F.2. Frequent words for each uncertainty bin

Figure F.2 shows the frequent words per each uncertainty

bin. We use term frequency–inverse document frequency

(TF-IDF) as the frequent counter, defined as follows:

TF-IDFpiq “ p1 ` log niq log
N

ni

, (F.1)

where N is the number of total captions, and ni is the num-

ber of captions which contain word i. For the image word

frequency, we use their ground truth captions for computing

TF-IDF scores.

F.3. Example uncertain samples

We visualize the uncertain images and captions, and their

corresponding retrieved items in Figure F.3 and Figure F.4.

Interestingly, the retrieved captions and images are plausi-

ble results for the given query items. These qualitative re-

sults also show how the Recall@1 measure is noisy, and the

proposed Plausible Match R-Precision (PMRP) is a more

plausible and reliable measure to compare different retrieval

methods.
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Figure F.2. Frequent words in each uncertainty bin. Term frequency–inverse document frequency (TF-IDF) sorted word frequencies are

shown for each uncertainty bin (U-Bin, ascending order) for image (upper row) and caption (bottom row) modalities.

Two people in the midst of a tennis match on a grass court.

Two men on grass court playing a game of tennis.

Two men playing doubles tennis on a grass court.

Two men playing tennis on a grass field.

a couple of people play a game of tennis on a grass surface

A male tennis players on the court with rackets.

A boy riding on ski's down a slope.

A young boy is attempting to slide down a slope.

A kid is riding down the street on a skateboard.

a man with warm clothes skating on the snow

a young person riding skis on a snowy field

a person skating in very much snow with warm clothes

Two boys riding skateboards in the street, behind tree branches.

two young people riding skate boards on a flat surface

Two young men riding skateboards across a parking lot.

two young men skateboarding in an open area during winter

A couple of kids riding on top of skateboards.

A couple of men holding tennis racquets on a tennis court.

Two men playing tennis at a somewhat large facility.

Two men playing doubles tennis on a grass court.

A couple of tennis players during a couples game about to deliver a hit.

A male tennis players on the court with rackets.

A surfer is on his board in the middle of an ocean spraying wave.

A man on a surfboard riding a wave

A man is surfing a small wave in the ocean.

A man riding on a wave on a surf board.

a person riding a surf board on a wave

A surfer riding a wave in a blue ocean.

A wet suited surfer riding the crest of an azure wave

a male surfing a large ocean wave on a white surfboard

The surfer is working on riding the big wave.

A surfer is riding on a large wave.

A surf boarder who is riding a wave.

Figure F.3. Uncertain image examples. Highly uncertain images, retrieved captions by PCME, and their ground truth captions are shown.

Figure F.4. Uncertain caption examples. Highly uncertain captions, retrieved images by PCME, and their ground truth image are shown.
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