
Supplement: Differentiable Patch Selection for Image Recognition

Jean-Baptiste Cordonnier1†∗ Aravindh Mahendran2† Alexey Dosovitskiy2

Dirk Weissenborn2 Jakob Uszkoreit2 Thomas Unterthiner2
1EPFL, Switzerland 2Google Research, Brain Team

jean-baptiste.cordonnier@epfl.ch

{aravindhm,adosovitskiy,diwe,usz,unterthiner}@google.com

The supplementary material consists of the following:
performance trade-offs associated with patch sampling ver-
sus running a CNN on the entire high resolution image (Ap-
pendix A), some theoretical discussions regarding the LP
formulation of index-sorted Top-K in (Appendix B), an ex-
periment quantifying the effect of decaying σ to 0 during
training in (Appendix C), results with another differentiable
top-K method we experimented with before developing our
approach (Appendix D), hyper-parameter details for all our
experiments (Appendix E), qualitative results (Appendix F),
and a PyTorch implementation of the perturbed Top-K mod-
ule (Appendix G).

A. Speed Improvements by Sampling Patches
We study the speed improvement that can be gained at

inference by using our patch extraction model compared to
running a model on the full image. We compare the num-
ber of samples processed per second at inference on a single
V100 GPU in Figure 1. If the useful information for recog-
nition is localized within than 10% of the pixels, which cor-
responds to extracting K = 10 patches of size 100 × 100
on a MegaPixel image, processing only the relevant regions
with the same network (ResNet50) allows a 5 fold speed
up. In this case, roughly 28 % of the inference time is spent
on the feature network, while most of the remaining time is
spent calculating the scores for the individual patches. The
Top-K operation’s influence on runtime is minimal. This
should be put in contrast with the common alternative of
running a significantly smaller ResNet18 on the full size im-
age which is not faster on 1000× 1000 images than our ap-
proach running a ResNet50 on the extracted patches. Using
hard Top-K at inference instead of the differentiable version
is consistently faster on a V100 GPU.

B. Linear Program
To understand why the LP, in equations 4 and 5, corre-

sponds to index sorted top-K, let us focus on the integral
∗Work done during internship at Google Research.† Equal contribution.

0 10 20 30 40 50 60 70 80 90 100
visible part of the image [%]

102

103

ex
am

pl
es

 / 
s a

t i
nf

er
en

ce

image size
448
1000
model
ResNet18
ResNet50
hard-top K
top K

Figure 1: Comparison of inference speed on a single V100
between ResNet 50 at full resolution images vs. extracting
only K ∈ {3, 5, 10} patches of dimension P ∈ {50, 100}
with differentiable or hard Top-K. The feature network is a
ResNet50 and aggregation is mean-pooling. x-axis is the
percentage of extracted pixels

(
K · P 2

)
compared to the

full image. For each point in this plot, the maximum over
feasible batch-sizes was used to obtain the highest possible
throughput.

solutions Yik ∈ {0, 1}. In this scenario, each column of
Y is a one-hot indicator vector selecting exactly one of the
scores in s. Furthermore, the objective function is the sum
of selected scores. Thus the optimal solution is to select the
K highest scores.

Lastly, the strict inequality constraint forces the selection
of numbers with lower indices earlier. This can be proven
by contradiction:
Consider a valid solution which has l > m, but sl was
selected by the kth column and sm by k′th column such
that k < k′. That is, Y [:, k] = one hot(l) and Y [:, k′] =
one hot(m). Then, since this solution is valid the following

1



No-Decay
Perturbed-TopK

No-Decay
Hard-TopK

Decay
Hard-TopK

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 2: Ablating the effect of reducing σ (perturbation
magnitude) to 0 during training. Each setting is repeated 9
times. Left: σ constant and perturbed top-K for both train-
ing and inference. Middle: σ constant, perturbed top-K for
training and hard top-K for inference. Right: σ decays to
0 during training, perturbed top-K during training and hard
top-K for inference.

holds ∑
i∈[N ]

iYi,k <
∑
j∈[N ]

jYj,k′ (1)

=⇒ l <m (2)

which is a contradiction to the original assumption.

C. Decaying σ to 0

We linearly decay perturbation magnitude σ to 0 in all
our models. We ablate this design choice on the billiard
balls dataset. These experiments use the transformer aggre-
gation head. All other hyper-parameters are kept the same.
In fig. 2 and table 1 we see that using hard top-k at inference
leads to higher accuracy (+1.3%). Decaying perturbation
magnitude to zero further improves performance (+1.4%).

test acc. [%]

No-Decay, Perturbed-TopK 91.5± 0.4
No-Decay, Hard-TopK 92.8± 0.4
Decay, Hard-TopK 94.2± 0.2

Table 1: Ablating the effect of reducing σ (perturbation
magnitude) to 0 during training. See caption in fig. 2 for
details.

D. Differentiable Sinkhorn
Another approach to make Top-K differentiable was pro-

posed by Xie et. al [4] and relies on the optimal transport
formulation of Top-K proposed by Cuturi et. al [1]. We
implemented the forward and backward pass following Al-
gorithm 3 of [4]. We report the results for traffic sign recog-
nition in Table 2 with similar setting as in Section 5.1. This
approach gives good results but suffers when using discrete
Top-K at inference.

test acc. [%]

Sinkhorn Top K = 5 95.4± 0.7
+ discrete Top-K at inference 83.0± 10.5

Sinkhorn Top K = 10 92.6± 3.1
+ discrete Top-K at inference 86.3± 1.7

Table 2: Performance of Sinkhorn Top-K based models on
the traffic signs dataset. We report the mean and standard
deviation across 5 runs.

E. Experimentation Details
For all experiments except the Fine-grained bird classifi-

cation ones, our scorer network consisted of a CNN with 4
convolutional layers of kernel size 3 × 3 with stride 1 and
“valid” padding. The number of feature maps was 8, 16, 32
and 1, respectively. Every convolution except for the last
was followed by a Relu activation function. The last con-
volution was followed by an 8 × 8 max pooling of stride
8.

Our feature network was different depending on the
dataset: On the Swedish Traffic Signs dataset, we used
the same feature network as ATS [2], which is a narrow
ResNet18 with 16 filters instead of the usual 64, 128, 256,
512. On the billiard balls dataset we used a standard
ResNet18. On the CUB-200 dataset we use the same feature
extractor as NTS-Net, that is a ResNet50.

We used the ADAM-W optimizer [3] for Traffic signs
and billiard balls dataset. We used SGD with momentum
0.9, similar to NTS-Net, for CUB-200. The exact details
of our optimizers can be seen in Table 3. We found that
weight decay coupled with momentum updates was better
to reduce overfitting on CUB-200.

In our adaptation of the NTS-Net, we added Squeeze Ex-
citation layers inside the region proposal network (RPN).
This was meant to compensate for the lack of non-
maximum suppression in our patch selection module. The
RPN for both our method and the baseline NTS-Net
are shown in figure 3. Lastly, with regards to data
pre-processing, instead of normalizing pixels by a pre-
computed pixel mean and pixel standard deviation, we re-
scaled pixel values to lie between [−1, 1] during training.

2



Dataset Traffic Signs Billiard balls CUB-200

Batch Size 32 64 16
Learning rate (LR) 10−4 10−4 10−3

Weight decay 10−4 10−4 10−4

Steps 100 000 30 000 31 300
LR Schedule Cosine decay Cosine decay + 5%

warm-up
Piece-wise constant + Decay by 0.1
at 60 and 80 epochs + 5% warm-up

Optimizer Adam-W Adam-W SGD + Momentum
Entropy regularizer 0.01 0.01 0.05
Gradient clip value 0.1 1.0 -

Table 3: Summary of optimization hyper-parameter settings.

(a) NTS-Net (b) Top-K NTS-Net

Figure 3: Architecture of the region proposal head used in the baseline NTS-Net model (a), and in our adaptation (b), for fine-
grained classification in the CUB-200 dataset. We added a squeeze excitation layer in the middle to allow for communication
between all features just before anchor prediction. Zero-one normalization is applied across all 1614 scores.

This was to match the value range we used for pre-training
our ResNet50 backbone on ImageNet ILSVRC12. Other
than this minor change, we used the same data augmenta-
tion as NTS-Net.

F. Qualitative Results
We visualize patches extracted by the model on the

CUB-200 dataset, on the test split, in fig. 4. This partic-
ular model is the best performing seed among the 5 random
repeats we averaged to report the number for K = 4 in the
main manuscript. It uses ‘mean’ aggregation and achieves
87.3% top-1 accuracy. The images visualized are not cherry
picked. We see that the model is able to focus on the bird
and captures the region around the eyes and torso. The lack
of NMS is evident as the model often looks at patches with
high overlap.

3



Figure 4: Patches extracted from images in the test split of the CUB-200 dataset. The first row shows the original input image
after being resized to 600 × 600 followed by a centre crop of 480 × 480. Padding artifacts correspond to selecting anchors
that include pixels outside the image boundary.

4



G. Differential Top-K PyTorch Code

1 import torch
2 import torch.nn as nn
3

4

5 class PerturbedTopK(nn.Module):
6 def __init__(self, k: int, num_samples: int = 1000, sigma: float = 0.05):
7 super(PerturbedTopK, self).__init__()
8 self.num_samples = num_samples
9 self.sigma = sigma

10 self.k = k
11

12 def __call__(self, x):
13 return PerturbedTopKFunction.apply(x, self.k, self.num_samples, self.sigma)
14

15

16 class PerturbedTopKFunction(torch.autograd.Function):
17 @staticmethod
18 def forward(ctx, x, k: int, num_samples: int = 1000, sigma: float = 0.05):
19 b, d = x.shape
20 # for Gaussian: noise and gradient are the same.
21 noise = torch.normal(mean=0.0, std=1.0, size=(b, num_samples, d)).to(x.device)
22

23 perturbed_x = x[:, None, :] + noise * sigma # b, nS, d
24 topk_results = torch.topk(perturbed_x, k=k, dim=-1, sorted=False)
25 indices = topk_results.indices # b, nS, k
26 indices = torch.sort(indices, dim=-1).values # b, nS, k
27

28 # b, nS, k, d
29 perturbed_output = torch.nn.functional.one_hot(indices, num_classes=d).float()
30 indicators = perturbed_output.mean(dim=1) # b, k, d
31

32 # constants for backward
33 ctx.k = k
34 ctx.num_samples = num_samples
35 ctx.sigma = sigma
36

37 # tensors for backward
38 ctx.perturbed_output = perturbed_output
39 ctx.noise = noise
40

41 return indicators
42

43 @staticmethod
44 def backward(ctx, grad_output):
45 if grad_output is None:
46 return tuple([None] * 5)
47

48 noise_gradient = ctx.noise
49 expected_gradient = (
50 torch.einsum("bnkd,bnd->bkd", ctx.perturbed_output, noise_gradient)
51 / ctx.num_samples
52 / ctx.sigma
53 )
54 grad_input = torch.einsum("bkd,bkd->bd", grad_output, expected_gradient)
55 return (grad_input,) + tuple([None] * 5)

References
[1] Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert. Differentiable ranking and sorting using optimal transport. In NeurIPS, 2019. 2
[2] Angelos Katharopoulos and François Fleuret. Processing megapixel images with deep attention-sampling models. In ICML, 2019. 2
[3] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. ICLR, 2019. 2
[4] Yujia Xie, Hanjun Dai, Minshuo Chen, Bo Dai, Tuo Zhao, Hongyuan Zha, Wei Wei, and Tomas Pfister. Differentiable top-k operator

with optimal transport. NeurIPS, 2020. 2

5


