
SUPPLEMENTARY MATERIAL
SMPLicit: Topology-aware Generative Model for Clothed People

Enric Corona1 Albert Pumarola1 Guillem Alenyà1 Gerard Pons-Moll2,3 Francesc Moreno-Noguer1
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In this supplementary material, we describe in detail the
implementation of SMPLicit when training and fitting, we
provide more qualitative results of fitting on-the-wild im-
ages, and discuss the current limitations that should be tack-
led by future work.

1. Implementation details
The implementation details are summarized in Section

5 of the main document. Here we provide further details
that help to reproduce the training of SMPLicit and fitting
processes. We will make our code publicly available.

Train data preparation. As mentioned in the main doc-
ument, we resort to several publicly available datasets and
augmentations. For the 3D clothig models that we down-
loaded from public links, we adjust them to a T-posed
canonical body shape β = 0 and pre-process 100 random
body variations, using SMPL’s learnt body deformation dis-
placement. In particular, we assign the deformation param-
eters of the closest SMPL vertex to each of the cloth ver-
tices. At training, we randomly sample one of these models
with probability 0.5, and otherwise we use the original data
from BCNet [4].

We noticed that the original 3D models of pants often
intersect between hips, specially for large SMPL shapes,
which in many cases makes the two legs of the recon-
structed garment connect. Notably, those produce artifacts
when posing the body with the garment. To avoid this issue,
we move from T-pose to a X-pose for training and inference
only of lower-body models. Since the original training data
already intersects, we repose the original pants by picking
the skinning weights of the closest SMPL vertices, but also
taking into account that their normal vector is similar to the
garment model normal.

Training. For the cloth latent space, we set |z| = 18 for
upper-body, pants, skirts, hair and |z| = 4 for shoes; the
pose-dependent deformation parameters |zθ| = 128, num-
ber of positional encoding clustersK = 500 and iso-surface

threshold td = 0.1 mm. We clip the unsigned distance field
to dmax = 10mm. The implicit network architecture uses
three 2-Layered MLPs that separately encode zcut, zstyle
and Pβ into an intermediate representation before a last 5-
Layered MLP predicts the target unsigned distance field, all
of them using ReLU nonlinearities. SMPLicit is trained us-
ing Adam [5], with an initial learning rate 10−3, β1 = 0.9,
β2 = 0.999 for 1M iterations with linear LR decay after
0.5M iterations, on a Nvidia® GTX 1080. We useBS = 12,
σn = 10−2 and refine a pre-trained ResNet-18 [2] as image
encoder f . As [6], we use weight normalization [11] instead
of batch normalization [3].

We observe there is a tradeoff between the number of
positional encoding clusters and inference time, and set
K = 500 clusters for a good compromise, as accuracy only
improves marginally for higher values. For shoes, we set
K = 100. We experimented using a KL-Divergence loss
instead of L1 loss, but the model performed worse, particu-
larly for garments where we have a small amount of data.

Fitting scans. The method for fitting 3D scans builds
upon pointcloud cloth segmentation and the predicted 3D
joint pose of the person. We schedule the fitting proce-
dure, initializing β and θ to represent a T-Posed person from
which only pose and translation are optimized for 200 iter-
ations with a learning rate of 1e− 2. Then, the body shape
β is also optimized with a decreased learning rate of 3e− 3
for 200 additional iterations. Finally, we reduce the learn-
ing rate of SMPL pose, shape and translation to 1e− 3 and
also fit the upper-body and lower-body cloth parameters for
2000 iterations. During this last step, we let the LR decay
linearly towards zero.

For the whole process, we leave the weights of SM-
PLicit untouched. In each iteration, the model optimizes
the cloth parameters for a combination of 1000 uniformly
sampled points and 1000 points from the cloth surface.

Fitting images. For fitting SMPLicit to images, we rely
on the SMPL estimations from Frankmocap [8] and 2D



Figure 1: Reconstructions of the proposed method when adding realistic wrinkle effects on the fitted clothes.
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Figure 2: More examples of fitting in multi-person images from the MPII Dataset [1].

cloth semantic segmentation and instance segmentation ob-
tained from [12]. We iterate over all SMPL detections, pro-

jecting the body model onto the image to identify the in-
stance segmentation of the target person, which is used to



Figure 3: Failure cases on images from the MPII Dataset [1].

mask out other people’s cloth segmentation.
We select the cloth types that have been segmented in the

target person, removing those classes that have been found
in less than 50 pixels, typically produced by a noisy seg-
mentation. For each garment type, we uniformly sample
points around the T-posed SMPL, and remove those that are
too far from the body surface, provided that they are never
close to clothing and would not contribute to training. To be
more robust to occlusions to other persons or unsegmented
objects, we also remove points whose projections do not fall
into the instance segmentation mask from the target person.

Finally, for every garment class (upper-clothes, pants,
etc), we also remove points whose projection falls into the
segmentation class of a garment type that could occlude
the target garment, according to a pre-defined sequence of
clothes. For instance, we do not optimize T-shirt points that
fall into the segmented area of jacket, hair or scarf, or pants
points that fall under upper clothes or jacket. This proved
particularly important when optimizing layers of clothes as
a jacket occludes a large part of upper-clothes.

When fitting shoes, for simplicity we only fit the left-
foot shoe and then mirror the reconstruction on T-Pose to

generate the right one, before posing the clothes to the final
model.

Each optimization takes approximately 90 seconds per
cloth when using a uniform sampling of 1283 points, for the
MPII [1] images which we tackle directly at their original
resolution (e.g. 720x1280 or 1080x1920). Inference time
can decrease substantially by sampling less points when
working with images of lower resolution.

2. High-Frequency details

Wrinkle details are important for representation of real-
istic avatars and accurate reconstructions. While not being
our primary goal, we show it is also possible to improve
SMPLicit models with high-frequency details. For this pur-
pose we follow a similar strategy as in [9, 10, 13] and refine
the initially estimated meshes with normal maps predicted
from images. These normal maps are predicted using pre-
trained PIFuHD’s pix2pixHD net-work, thus we here con-
sider humans in upright positions similar to those in their
training set, however, the normal prediction network will
fail when tackling people with more challenging poses or



noisy segmentations. Fig 1 shows the reconstructions en-
hanced with wrinkles.

3. Limitations

Regarding the process of generating and animating
clothed humans, many previous works have devised two
steps in which one first generates smooth garments consis-
tently, and then adds pose-dependent wrinkles. We present
SMPLicit-core as a very efficient model for generating dif-
ferent topologies, but it appears harder for implicit func-
tions to provide high frequency deformations. We do leave
the topic of cloth high-frequency deformations to further in-
vestigation, and actively encourage interested researchers to
improve on our method.

We leveraged data very recently published [7, 4] and ex-
pect that SMPLicit will be able to represent more cloth va-
riety when trained with larger databases, such as [14] which
was not available at time of submission. Furthermore, SM-
PLicit is easily extendable to new garment types such as
glasses or hats.

On the limitations of the image fitting method, Fig. 3
shows failure cases on images of the MPII Dataset [1].
Most wrongly optimized garments are due to inaccuracies
and miss-alignments between estimated SMPL body shape
and pose and 2D cloth segmentation (rows 1-3) or noisy
cloth segmentation areas (Rows 4-5). Some of these prob-
lems could be tackled introducing SMPLicit within a deep-
learning pipeline given enough training data. Overall, hair
is the most difficult human component to represent as a
mesh. We show an example of a challenging hair pose-
dependent deformation in the last row.
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