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1. Backpropagation through the sensor for-
ward model

1.1. Noise generation

Direct differentiation of (7) is impossible, as it involves
sampling from a parametrized distribution of a discrete ran-
dom variable. Therefore, we resort to estimating the gra-
dients of the expectation over the loss. This is commonly
achieved using one of two methods: the score function [2]
or reparametrization [7]. Since score methods deviate from
the orthodox backpropagation procedure [14], we opted for
the latter.

Recently, Joo et al. [4] introduced the Generalized
Gumbel-Softmax (GenGS) reparametrization, which can
approximate any discrete, non-negative, and finite-mean
random variable. They achieve this by truncating its support
to a finite number of bins and relaxing the resulting categor-
ical distribution into a continuous form using the Gumbel-
Softmax reparametrization [3]. Nevertheless, this method
has a few drawbacks which need to be addressed.

First, it requires setting two hyperparameters: the tem-
perature τGenGS, which controls the smoothness of the re-
sulting distribution, and the number of bins in its categori-
cal support nGenGS. As τGenGS approaches zero, sampling
becomes increasingly discrete, while the gradient variance
grows. Therefore, we apply the approach of Jang et al. [3]
by starting with a high temperature and annealing it towards
zero along training.

Choosing nGenGS is less trivial. As the support of any
Poisson distribution is infinite, increasing this hyperparam-
eter will result in a better categorical approximation. How-
ever, since the latter are represented using one-hot vectors,
memory complexity will linearly increase as well. This is
especially problematic in our case, where we simultane-
ously sample from a different Poisson distribution for each
pixel. To solve this issue, we rely on a corollary of the cen-

tral limit theorem, which indicates that for high mean rate
of arrivals (e.g. more than 1000 [9]), a Poisson distribution
may be approximated by a Gaussian one. Therefore, we use
GenGS for low photon counts, and a Gaussian distribution
for larger ones. This allows setting nGenGS to a relatively
low value.

We observed that the above procedure increases perfor-
mance by around 0.1dB for low to moderate SNR levels,
compared to a simple Gaussian approximation.

1.2. Quantization

Lastly, we note that the derivative of the rounding oper-
ator in (10) is a.e. zero. Upon first inspection, this disal-
lows backpropagation through the quantization step in (11).
However, if we consider the noisy additive perturbations
to the quantizer input in (8), we may treat this process as
stochastic and use the derivative of the expectation of the
quantized value, which is smooth. We approximate this
quantity by the identity straight through estimator [1].

2. Technical details

2.1. Implementation details

We implement our model using PyTorch [11], Kor-
nia [13] and PyTorch3D [12], and train it for one million it-
erations on 4 NVIDIA GeForce RTX 2080 Ti GPUs. Since
we work with 241 frames for each training example, we
use NVIDIA DALI1 to accelerate loading times and upload
batches of 2 clips directly to each GPU. We optimize using
the ADAM solver [6] with a learning rate of 10−4. Training
takes roughly 1-2 days.

We produce bursts comprised of n = 3 frames. The for-
ward model was configured with τ1 being 90% of the full-
well capacity of the respective camera. GenGS was applied

1https://github.com/NVIDIA/DALI



Figure 1. Outdoor experiment setup. The acquired scene is marked
in red.

for less than 1000 incoming electrons with nGenGS = 1200.
We set τGenGS to e−10−5t, where t is the iteration number,
until a minimum of 0.1 is reached. The predicted kernel
size is 5 × 5. Our loss hyperparameters are µ = 1, α =
0.9999886, β = 100. For a 10-bit 720p burst, evaluation
takes approximately 0.7 seconds on a single GeForce RTX
2080 Ti GPU while requiring 7110MB of memory.

2.2. Experiment setup

We list the selected camera and exposure configuration
of each conducted experiment in Table 1.

Indoor experiment. To enable different vibration modes
with multiple degrees of freedom during acquisition, we
mounted a Turnigy MultiStar 570KV drone motor with
electronic speed control asymmetrically on top of the cam-
era. We set the camera indoors, five meters in front of a
wall depicting several printed signs. We illuminated it by a
non-flickering 3000K led measured at around 50-80lx from
the camera’s viewpoint. We used a 50mm fixed focal lens
with an f-number of 1.8. To mitigate fixed-pattern noise
(FPN), we applied dark frame subtraction and flat-field cor-
rection as provided by the camera’s ISP. Since we manually
captured the burst, the blank interval between consecutive
frames was not fixed in practice.

Outdoor experiment. We chose FLIR Blackfly S USB
3.1 as a low-cost camera with a high frame rate and a flex-
ible interface. The camera offers 226 FPS at a resolution
of 1440 × 1080 pixels and a configurable array of up to

8 exposures, allowing the subsequent capture of the de-
sired learned-exposure burst, corresponding fixed-exposure
burst, and full-exposure image for comparison. We chose a
lens with a focal length of 50mm and set the f-number to
22.

We set the camera on a tripod and attached the same mo-
tor from the previous experiment underneath it to create vi-
brations, as depicted in Fig. 1. We supplied the motor with
a voltage of 13.8V, resulting in approximately 7850 RPM.
Finally, we increased the vibration amplitude by unbalanc-
ing the rotor blades.

3. Additional results

3.1. Additional synthetic results

We include more results on our synthetic test set in Fig.
2.

3.2. Ablation study

We conduct an ablation study to assess the contribution
of each network module to our proposed pipeline. Table 2
presents the average PSNR obtained on our synthetic test
set by different ablated models. As we can see, the most
impactful component is the forward model, which enables
learning optimal exposures and yields a significant perfor-
mance gain of 2.7dB. This improvement is further demon-
strated by comparing our model’s uniform-exposure out-
put to the learned-exposure one in Fig. 2. Moreover, pre-
aligning the frames via the flow network improves results by
0.8dB. It is also evident that exposure normalization (14)
and our annealed loss term (17) are critical to the proper
convergence of the learning process.

Careful examination of the flow network’s performance
further reveals the importance of using learned exposures
besides forcing frame diversity. Fig. 3 presents the refer-
ence frame and an aligned neighboring frame in both the
uniform- and learned-exposure regime. As we can see,
while the reference frame in the uniform case suffers from
noticeable blur, its adaptive counterpart is much sharper
due to its shorter exposure. This difference gives the lat-
ter model an advantage over the other, which depicts severe
alignment artifacts. This observation demonstrates that ex-
posure learning is not only beneficial for our end-goal re-
construction task but can also contribute to the performance
of intermediate layers.
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Experiment Camera T ∆tmin ∆tro Added blank slot (∆t4) Learned exposures
Synthetic KAYA Instruments JetCam19M 3ms 0µs 500µs 3 872, 234, 583µs
Indoor KAYA Instruments JetCam19M 5ms 500µs 400µs 7 1228, 503, 828µs
Outdoor FLIR BFS-U3-16S2M 5ms 4µs 400µs 7 1203, 347, 801µs

Table 1. Experiment configurations.
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Figure 2. Example results from our synthetic test set. (a,b) Full-exposure image; Reconstruction using: (c) DMPHN [15]; (d) Analysis-
synthesis networks pair [5]; (e) DeblurGAN-v2 [8]; (f) KPN [10]; Our approach using (g) fixed uniform, and (h) learned exposures.

Missing component PSNR
Exposure learning 28.72
Flow network 30.62
Exposure normalization 30.96
Annealed loss term 31.18
None 31.42

Table 2. Average PSNR of ablated models.
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Figure 3. We compare the flow network’s performance when us-
ing uniform and learned exposures. Since the uniform burst has a
blurry reference frame, alignment results in evident artifacts. On
the other hand, learning the burst’s exposures enables proper align-
ment.
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