
A. Appendix
A.1. Training recipe used in Table 1

Both Recipe-1 and Recipe-2 share the same batch size of
256, initial learning rate 0.1, weight decay at 4⇥10�5, SGD
optimizer, and cosine learning rate schedule. Recipe-1 train
the model for 30 epochs and Recipe-2 train the model for
90 epochs. We don’t introduce training techniques such as
dropout, stochastic depth, and mixup in Recipe-1 or Recipe-
2.

We make the same observation when training Recipe-1
and Recipe-2 use the same #Epochs but different weight
decay: The accuracy of ResNet18 (1.4x width) is 0.25%
higher and 0.36% lower than that of ResNet18 (2x depth)
when the weight decay is 1e�4 and 1e�5, respectively.

A.2. Base architecture in recipe-only search
We show the base architecture (a scaled version of

FBNetV2-L2) used in the recipe-only search in Table 10,
while the input resolution is 256⇥256. This is the base ar-
chitecture used in the training recipe search in Section 4.1.
It achieves 79.1% top-1 accuracy on ImageNet with the orig-
inal training recipe used for FBNetV2. With the searched
training recipes, it achieves 79.9% ImageNet top-1 accuracy.

A.3. Search settings and details
In the recipe-only search experiment, we set the early-

stop rank correlation threshold to be 0.92, and find the corre-
sponding early-stop epoch to be 103. In the predictor-based
evolutionary search, we set the population of the initial gen-
eration to be 100 (50 best-performing candidates from con-
strained iterative optimizationand 50 randomly generated
samples). We generate 24 children from each candidate and
pick the top 40 candidates for the next generation. Most
of the settings are shared by the joint search of architecture
and training recipes, except the early-stop epoch to be 108.
The accuracy predictor consists of one embedding layer (ar-
chitecture encoder layer) and one extra hidden layer. The
embedding width is 24 for the joint search (note that there is
no pretrained embedding layer for the recipe-only search).
We set both minimum and maximum FLOPs constraint at
400M and 800M for the joint search, respectively. The se-
lection of m best-performing samples in the constrained
iterative optimization involves two steps: (1) equally divide
the FLOP range into m bins and (2) pick the sample with
the highest predicted score within each bin.

We show the detailed searched training recipe in Table 9.
We also release the searched models.

A.4. Comparison between recipe-only search and
hyperparameter optimizers

Many well-known hyperparameter optimizers (ASHA,
Hyberband, PBT) evaluate on CIFAR10. One exception is

Notation Value
lr 0.026
optim RMSprop
ema true
p 0.17
d 0.09
m 0.19
wd 7e-6

Table 9: Searched training recipe.

0 100 200 300 400
Epoch

20

30

40

50

T
op

-1
er

ro
r

train

val

val (EMA)

val (Distill/EMA)

Figure 8: Training curve of the search recipe on FBNetV3-G.

[36], which reports a 0.5% gain for ResNet50 on ImageNet
by searching optimizers, learning rate, weight decay, and
momentum. By contrast, our recipe-only search with the
same space (without EMA) increases ResNet50 accuracy by
1.9%, from 76.1% to 78.0%.

A.5. Training settings and details

We use distributed training with 8 nodes for the final
models, and scale up the learning rate by the number of
distributed nodes (e.g., 8⇥ for 8-node training). The batch
size is set to be 256 per node. We use label smoothing and
AutoAugment in the training. Additionally, we set the weight
decay and momentum for batch normalization parameters to
be zero and 0.9, respectively

We implement the EMA model as a copy of the original
network (they share the same weights at t = 0). After each
backward pass and model weights update, we update the
EMA weights as

wema
t+1 = ↵wema

t + (1 � ↵)wt+1 (2)

where wema
t+1 , wema

t , and wt+1 refer to the EMA weight
at step t + 1, EMA weight at step t, and model weight at
t + 1. We use an EMA decay ↵ of 0.99985, 0.999, and
0.9998 in our experiments on ImageNet, CIFAR-10, and
COCO, respectively. We further provide the training curves
of FBNetV3-G in Fig. 8.

The baseline models (e.g., AlexNet, ResNet, DenseNet,
and ResNeXt) are adopted from PyTorch open-source im-
plementation without any architecture change. The input
resolution is 224⇥224.

11



block k e c n s se act.
Conv 1 3 16 1 2 - hswish
MBConv 3 1 16 2 1 N hswish
MBConv 5 5.46 24 1 2 N hswish
MBConv 5 1.79 24 1 1 N hswish
MBConv 3 1.79 24 1 1 N hswish
MBConv 5 1.79 24 2 1 N hswish
MBConv 5 5.35 40 1 2 Y hswish
MBConv 5 3.54 32 1 1 Y hswish
MBConv 5 4.54 32 3 1 Y hswish
MBConv 5 5.71 72 1 2 N hswish
MBConv 3 2.12 72 1 1 N hswish
Skip - - 72 - - - hswish
MBConv 3 3.12 72 1 1 N hswish
MBConv 3 5.03 128 1 1 N hswish
MBConv 5 2.51 128 1 1 Y hswish
MBConv 5 1.77 128 1 1 Y hswish
MBConv 5 2.77 128 1 1 Y hswish
MBConv 5 3.77 128 4 1 Y hswish
MBConv 3 5.57 208 1 2 Y hswish
MBConv 5 2.84 208 2 1 Y hswish
MBConv 5 4.88 208 3 1 Y hswish
Skip - - 248 - - - hswish
MBPool - 6 1984 1 - - hswish
FC - - 1000 1 - - -

Table 10: Baseline architecture used in the recipe-only search. The block notations are identical to Table 2. Skip block refers to an identity connection if the
input and output channel are equal otherwise a 1⇥1 conv.

Model Distillation FLOPs Acc. (%) �

EfficientNetB2 N 1050 80.3 0.0
FBNetV3-E N 762 80.4 +0.1
FBNetV3-E Y 762 81.3 +1.0

Table 11: Model comparison w/ and w/o distillation.

A.6. More discussions on training tricks

We acknowledge EfficientNet does not use distillation.
For fair comparison, we report FBNetV3 accuracy without
distillation. We provide an example in Table 11: Without
distillation, FBNetV3 achieves higher accuracy with 27%
less FLOPs, compared to EfficientNet. However, all our
training tricks (including EMA and distillation) are used in
the other baselines, including BigNAS and OnceForAll.

Generality of stochastic weight averaging via EMA.
We observe that stochastic weight averaging via EMA yields
significant accuracy gain for the classification tasks, as has
been noted prior [3, 14]. We hypothesize that such a mecha-
nism could be used as a general technique to improve other
DNN models. To validate this, we employ it to train a Reti-
naNet [27] on COCO object detection [28] with ResNet50
and ResNet101 backbones. We follow most of the default
training settings but introduce EMA and Cosine learning rate.
We observe similar training curves and behavior as the classi-
fication tasks, as shown in Fig. 9. The generated RetinaNets

0 10 20 30 40
COCO epoch

15

20

25

30

35

40

m
A

P

val

val (EMA)

Figure 9: Training curves for RetinaNet with ResNet101 backbone
on COCO object detection.

with ResNet50 and ResNet101 backbones achieve 40.3 and
41.9 mAP, respectively, both substantially outperform the
best reported values in [54] (38.7 and 40.4 for ResNet50 and
ResNet101, respectively). A promising future direction is
to study such techniques and extend it to other DNNs and
applications.

A.7. Further improvements on FBNetV3
We demonstrate that using a teacher model with higher

accuracy leads to further accuracy gain on FBNetV3. We
use RegNetY-32G FLOPs (top-1 accuracy 84.5%) [10] as
the teacher model, and distill all the FBNetV3 models. We
show all the derived models in Fig. 10, where we observe a

12



consistent accuracy gain at 0.2% - 0.5% for all the models.

500 1000 1500 2000 2500 3000 3500 4000
FLOPs (M)

75

77

79

81

A
cc

u
ra

cy
(%

,
T
op

-1
Im

ag
eN

et
)

83.2

81.5

80.8

79.6

MnasNet

MobileNetV3

Shu�eNetV2

ChamNet

ProxylessNAS

E�cientNet

FBNetV2

RegNetY

BigNAS

OnceForAll

Ours (FBNetV3)

Figure 10: ImageNet accuracy vs. model FLOPs comparison
of FBNetV3 (distilled from giant RegNet-Y models) with other
efficient convolutional neural networks.

13


