
Learning a Proposal Classifier for Multiple Target Tracking
(Supplementary Material)

Peng Dai1 Renliang Weng2 Wongun Choi2 Changshui Zhang1 Zhangping He2

Wei Ding2

1Tsinghua University, Beijng, China. 2Aibee Inc
1{daip2020, zcs}@mail.tsinghua.edu.cn 2{rlweng, wgchoi, zphe, weiding}@aibee.com

A. Detailed Algorithm
In this section, we first detail the gating strategy in affin-

ity graph construction, and then provide the pseudocode of
the algorithms presented in the main paper.

A.1. Gating Strategy

To reduce the complexity of the graph, we adopt a simple
gating strategy to remove the edges exceeding the thresh-
olds. Specifically, let Oi represent the valid neighbors of
vertex vi, and Oi is obtained by:

Oi = {∀vj ; It(ti, tj , τt)&Ip(pi,pj , τp)&Ia(ai,aj , τa)}
(1)

where It is an indicator function to check if the minimum
time gap between vertex vi and vj is less than τt, Ip is also
an indicator function to check if the location distance is less
than τp when having the minimum time gap, and Ia checks
if the appearance distance is less than τa. The thresholds τt,
τp and τa determine the radius of the gate.

A.2. Proposal Generation and Deoverlapping

Algorithm 1 and Algorithm 2 show the detailed pro-
cedures to generate proposals. In these algorithms, smax

(maximum cluster size) and ∆ (cluster threshold step) are
utilized to improve the purity of the generated clusters in
the early iterations. It should be noted that we adopt a com-
patible function to keep all pairwise vertices within a cluster
to be temporally compatible, i.e., no temporally overlapping
vertices are allowed within the same cluster.

Algorithm 3 provides a summary of the de-overlapping
procedures to generate the final tracking output.

B. Parameter Sensitivity Analysis
Here, we investigate the effects of different settings on

parameter smax, ∆ and K (the maximum number of edges
linked to one vertex) to the tracking performance. The pa-
rameter smax and ∆ are used to control the growth speed of
the proposals. The results in Figure 1 and Figure 2 show

Algorithm 1: Iterative Proposal Generation
Input: Node set V , iterative number I , maximum

cluster size smax, cluster threshold step ∆.
Output: Proposal set P

1 initialization: P = ∅, i = 0, V ′ = V
2 while i < I do
3 G = BuildAffinityGraph(V ′) ;
4 C = ClusterNodes(G, smax, ∆) ;
5 P = P ∪ C;
6 V ′ = UpdateNodes(C) ;
7 i = i + 1 ;
8 end
9 Return P

that we can choose smax ∈ [2, 4], ∆ ∈ [0.02, 0.06] to
achieve the satisfactory and stable performance. With the
the increasing smax or ∆, more noises will be introduced to
the proposals in early iterations, hence reducing the perfor-
mance. The parameter K controls the number of edges in
the graph construction. The results in Figure 3 show that a
satisfactory and stable performance can be achieved when
K > 1.

C. Evaluation Results on MOT16

We also report the quantitative results obtained by our
method on MOT16 in Table 1 and compare it to methods
that are officially published on the MOTChallenge bench-
mark. Our method can also obtain state-of-the-art IDF1
score on MOT16.

D. Qualitative Analysis

Figure 4 and Figure 5 give a qualitative comparison be-
tween MPNTrack[3] and our method on MOT17. It vali-
dates that our method has better performance in handling
long-term occlusions, hence achieving higher IDF1 score.

Algorithm 2: Cluster Nodes
Input: Symmetric affinity matrix G, maximum

cluster size smax, cluster threshold step ∆.
Output: Clusters C

1 function main:
2 C = ∅,R = ∅, τ = min(G) ;
3 C′,R = FindClucters(G, τ, smax) ;
4 C = C ∪ C′ ;
5 whileR 6= ∅ do
6 τ = τ + ∆;
7 C′,R = FindClucters(GR, τ, smax) ;
8 C = C ∪ C′ ;
9 end

10 return C;
11 function FindClucters(G, τ, smax):
12 G′ = PruneEdge(G, τ) ;
13 S = FindConnectedComponents(G′) ;
14 C′ = {c |c ∈ S, |c| < smax and

Compatible(c)} ;
15 R = S\C′ ;
16 return C′,R;
17 function Compatible(c):
18 if d(ti, tj) > 0,∀i, j ∈ c, i 6= j then
19 return True ;
20 else
21 return False ;
22 end

Algorithm 3: De-overlapping

Input: Ranked Proposals {P̂1, P̂2, · · · , P̂Np
}

Output: Tracking Results T
1 Dictionary T = {}, Occupied Set I = ∅, i = 1 ;
2 while i <= Np do
3 Ci = P̂i\I ;
4 for vi in Ci do
5 T[vi] = i ;
6 end
7 I = I ∪ Ci ;
8 i = i+ 1 ;
9 end

10 Return T ;

E. Further Performance Comparison

We also noticed that MPNTrack [3] used a different
ReIdentification (ReID) model from our method. In order
to achieve a completely fair comparison, we also provide
the comparison results between our method and MPNTrack
using our ReID model on the training set of MOT17. Ta-
ble 2 shows the detailed results. By comparing our method

Figure 1. Influence of the maximum cluster size smax on proposal
generation performance.

Figure 2. Influence of the cluster threshold step ∆ on proposal
generation performance.

Figure 3. Influence of the maximum neighbors for each node K
on proposal generation performance.

with MPNTrack2, it is clear that our method achieves better
performance on identity preservation, improving the IDF1

Method MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDs↓ Hz↑

Ours 58.8 67.6 27.3 35.0 6167 68432 435 4.3
Lif T [5] 61.3 64.7 27.0 34.0 4844 65401 389 0.5
MPNTrack [3] 58.6 61.7 27.3 34.0 4949 70252 354 6.5
HDTR [1] 53.6 46.6 21.2 37.0 4714 79353 618 3.6
TPM [9] 51.3 47.9 18.7 40.8 2701 85504 569 0.8
CRF TRACK [10] 50.3 54.4 18.3 35.7 7148 82746 702 1.5
NOTA [4] 49.8 55.3 17.9 37.7 7248 83614 614 19.2
UnsupTrack [6] 62.4 58.5 27.0 31.9 5909 61981 588 1.9
GNNMatch [8] 57.2 55.0 22.9 34.0 3905 73493 559 0.3
Tracktor [2] 56.2 54.9 20.7 35.8 2394 76844 617 1.6
TrctrD16 [11] 54.8 53.4 19.1 37.0 2955 78765 645 1.6
PV [7] 50.4 50.8 14.9 38.9 2600 86780 1061 7.3

Table 1. Performance comparison with start-of-the art on MOT16
(top: offline methods; bottom: online methods).

Figure 4. A qualitative example showing (a) a failure case of
MPNTrack[3] in handling long-term occlusions, which reduces
the IDF1 score; (b) our method can effectively handle this case.
The numbers are the object IDs. Best viewed in color.

score by 1.5 percentage. By comparing MPNTrack1 with
MPNTrack2, we can see that the overall performance gap is
small. In summary, our method can achieve better associa-
tion accuracy than MPNTrack [3].

References
[1] Maryam Babaee, Ali Athar, and Gerhard Rigoll. Mul-

tiple people tracking using hierarchical deep tracklet re-
identification. arXiv preprint arXiv:1811.04091, 2018. 3

[2] Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixe.
Tracking without bells and whistles. In ICCV, pages 941–
951, 2019. 3

Figure 5. A qualitative example showing (a) a failure case of MPN-
Track [3] in handling occlusions, which leads to an identity trans-
fer when one person passes the other and a fragmentation when
one is fully occluded; (b) our method can effectively handle this
case. The numbers are the object IDs. Best viewed in color.

Method MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDs↓

Ours 63.9 71.8 647 377 7176 113700 728
MPNTrack1 64.0 70.0 648 362 6169 114509 602
MPNTrack2 63.9 70.3 634 365 6228 114723 523

1 with their own ReID model
2 with our ReID model

Table 2. Further performance comparison on the training set of
MOT17.

[3] Guillem Brasó and Laura Leal-Taixé. Learning a neural
solver for multiple object tracking. In CVPR, pages 6247–
6257, 2020. 1, 2, 3

[4] Long Chen, Haizhou Ai, Rui Chen, and Zijie Zhuang. Ag-
gregate tracklet appearance features for multi-object track-
ing. IEEE Signal Processing Letters, 26(11):1613–1617,
2019. 3

[5] Andrea Hornakova, Roberto Henschel, Bodo Rosenhahn,
and Paul Swoboda. Lifted disjoint paths with application
in multiple object tracking. In International Conference on
Machine Learning, pages 4364–4375, 2020. 3

[6] Shyamgopal Karthik, Ameya Prabhu, and Vineet Gandhi.
Simple unsupervised multi-object tracking. arXiv preprint
arXiv:2006.02609, 2020. 3

[7] Xuesong Li, Yating Liu, Kunfeng Wang, Yong Yan, and Fei-
Yue Wang. Multi-target tracking with trajectory prediction
and re-identification. In 2019 Chinese Automation Congress
(CAC), pages 5028–5033, 2019. 3

[8] Ioannis Papakis, Abhijit Sarkar, and Anuj Karpatne. Gc-
nnmatch: Graph convolutional neural networks for multi-
object tracking via sinkhorn normalization. arXiv preprint
arXiv:2010.00067, 2020. 3

[9] Jinlong Peng, Tao Wang, Weiyao Lin, Jian Wang, John See,
Shilei Wen, and Erui Ding. Tpm: Multiple object tracking
with tracklet-plane matching. PR, 107:107480, 2020. 3

[10] Jun Xiang, Guohan Xu, Chao Ma, and Jianhua Hou. End-to-
end learning deep crf models for multi-object tracking deep
crf models. CSVT, 31(1):275–288, 2020. 3

[11] Yihong Xu, Aljosa Osep, Yutong Ban, Radu Horaud, Laura
Leal-Taixé, and Xavier Alameda-Pineda. How to train your
deep multi-object tracker. In CVPR, pages 6787–6796, 2020.
3

