
6. Appendix
6.1. Details of Sampling

To learn a reliable arbitrary-shape text contour gener-
ation network, we not only employ the positive training
samples, but also utilize the negative training samples. As
shown in Fig. 5, we take the minimum bounding box (red)
of the text as the positive training sample. To generate the
negative training sample, we first place the contour of each
arbitrary-shape scene text on the image with the stride of 8
to generate candidate contours (cyan dashed line) in a copy-
move manner. Then, we calculate the overlaps between the
axis-aligned circumscribed bounding boxes of these candi-
date contours and those of all positive contours (cyan solid
line). After that, the candidate contours are assigned to dif-
ferent bins {(0, 0.05], (0.05, 0.1], (0.1, 0.15], (0.15, 0.2],
(0.2, 0.25], (0.25, 0.3]} based on the overlaps. Next, we
randomly choose a contour from the bin of the lowest in-
terval that contains candidate contours. Finally, the mini-
mum bounding box (yellow) of the selected contour is re-
garded as the negative sample. Additionally, the generation
of the minimum bounding box follows the strategy that uti-
lizes cv2.minAreaRect and cv2.boxPoints to obtain cor-
ner points. We further reorder the generated corner points
from the top-left point anticlockwise, as the Arabic number
labeled in Fig. 5.

6.2. More Qualitative Detection Results

To further demonstrate the effectiveness of our proposed
method, more qualitative detection results are displayed in
Fig. 6. We observe that our model can not only localize the
arbitrary-shape text in complex scenarios, but also detect
texts with extremely small sizes. Additionally, our method
can also localize long Chinese or English texts well via the
progressive regression strategy.

6.3. Intermediate Results

As shown in Fig. 7, we report the quantitative results
of intermediate outputs and visualize the qualitative results
of several samples. In Fig. 7 (c), the axis-aligned bound-
ing boxes generated by the horizontal text proposal gen-
eration module can not surround the oriented or curved
texts well, thus resulting in poor performances, e.g., Recall
of 63.1%, Precision of 70.1%, and F-measure of 66.7%.
Meanwhile, the oriented bounding boxes yielded by the ori-
ented text proposal generation module also can not enclose
the curved texts well, as shown in Fig. 7 (d), but it promotes
the F-measure from 66.7% to 72.2%. After we evolve the
oriented text proposals to arbitrary-shape text contours for
one time, the F-measure increases by 8.4%. It indicates that
the localized text contours are much better than the oriented
bounding boxes, as shown in Fig. 7 (e). When we further e-
volve the localized text contours, the text contours are clos-
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Figure 5: Illustration of sampling. The cyan dashed line de-
notes the negative candidate contours generated by the con-
tour (cyan solid line) of the scene text in a copy-move man-
ner. The red and yellow minimum bounding boxes of con-
tours indicate the positive training sample and the negative
training sample respectively. The labeled Arabic numbers
represent the orders of reordered corner points.

er to the ground-truth, as illustrated in Fig. 7 (f). It boosts
2.7%, 2.1%, and 2.5% in Recall, Precision, and F-measure,
respectively. Moreover, Fig. 7 (g) reveals that the reliable
contour localization mechanism can achieve more accurate
text contours with the high confidence, which especially
brings an improvement of 1.1% in Precision.

6.4. Qualitative Analyses of Ablation Study

To further illustrate the effectiveness of the oriented text
proposals generation (OTPG) module, the contour informa-
tion aggregation (CIA) technique, and the reliable contour
localization mechanism (RCLM), we present the qualitative
detection results in Fig. 8. When our proposed model does
not utilize CIA, the localized text contours are not smooth
enough and surround more backgrounds, as displayed in
Fig. 8 (c). When we do not integrate CRLM, Fig. 8 (d) re-
veals that it localizes the curved text well, but generates
some false and missing detections. Once the OTPG module
is not employed, as shown in Fig. 8 (f), it would generate
some self-intersection text contours, compared with those
in Fig. 8 (e).

6.5. Runtimes Analyses

In the inference stage, the time consumption of our pro-
posed method mainly consists of two components: the net-
work inference time and the post-processing time. Accord-
ing to Table 8, the testing scale can distinctly influence the
network inference time. In effect, we have fixed the short-
er side of the testing image to 416, 512, 640, and 640 for
CTW1500, Total-Text, ArT, and TD500, respectively, while
resized the longer side to keep the original aspect ratio. Ad-
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Figure 6: Qualitative detection results of our method on CTW1500, Total-Text, ArT, and TD500. Red bounding boxes denote
detection results. Green bounding boxes are the ground-truth. It is worth noting that the ground-truth of ArT is not available.
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(a) Input (b) Center Map (c) HTPG (d) OTPG (e) CLM-1 (f) CLM-2 (g) RCLM
Figure 7: Illustration of quantitative and qualitative results for intermediate outputs. (a) denotes the input image. (b) is the
predicted center heatmap that is placed on the input image. (c) and (d) indicate the outputs of the horizontal text proposal
genreation (HTPG) module and the oriented text propogal generation (OTPG) module. (e) and (f) mean the outputs of the first
and second contour localization mechanism (CLM) module. (g) is the output of the reliable contour localization mechanism
(RCLM). Red means the detected results. Green is the ground-truth. The experiments are conducted on CTW1500.

ditionally, the number of text contour detections, generat-
ed by the network, would mainly affect the speed of the
polygonal NMS [5] in the post-processing. It is because the

number of text contour detections could influence the calcu-
lation of the overlaps between text contours. To accelerate
the polygonal NMS operation, we utilize cython and c lan-
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Figure 8: Qualitative detection results in the ablation study. Red bounding boxes denote detection results. Green bounding
boxes represent the ground-truth.

Table 8: Runtimes of our method. ‘F’ means the F-measure.

Dataset F (%) Testing
Scale

Time Consumption (ms)
FPSNetwork

Inference
Post

Processing
CTW1500 84.7 416 49.8 0.52 19.9
Total-Text 85.2 512 53.8 0.50 18.4

ArT 74.0 640 60.8 0.63 16.3
TD500 87.0 640 59.6 0.25 16.7

guage, instead of pure python used in the body. Compared
with the speed reported in Table 2 of the body, the accel-
erated NMS can increase the total runtime of our model by
about 8 FPS for CTW1500. The reported runtime in Ta-
ble 8 is the average time per image over three runs for each
dataset, based on a workstation with one 4.0 GHz CPU and
a single NVIDIA GTX 2080Ti GPU.

6.6. Limitations

According to previous experiments, our proposed
method works well in most challenging scenarios, but it still
fails for some difficult cases. Firstly, when the characters of
scene texts contain artistic fonts, these texts could not be
detected or only a part of the texts are localized, as shown
in Fig. 9 (a). The reason is that the feature representations
of artistic characters are more similar to general objects. It
is easy to be regarded as the non-text class, thus resulting in
the inaccurate predictions of text centers and sizes. Second-
ly, Fig. 9 (b) reveals that our model is incapable of detecting
the overlapped texts. It can be ascribed to two reasons: (i)
the centers of overlapped texts may be the same, which on-
ly generates one prediction; (ii) the polygonal NMS in our

(a) Artistic fonts (b) Overlapped texts (c) Large character space

Figure 9: Failure samples. These samples come from
CTW1500, Total-Text, and TD500. Red bounding box-
es denote detection results. Green bounding boxes are the
ground-truth.

model utilizes the maximum intersection [5] to calculate the
overlap, which easily results in only keeping one text when
the detected text is largely contained by the other. Thirdly,
the large character space in the texts can lead these texts to
be undetected, or some individual characters of the texts to
be detected, as displayed in Fig. 9 (c). It is because the large
character space may induce our model to generate uncertain
text centers and sizes. Meanwhile, the space between char-
acters may be regarded as the background to break off the
entire text.


