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A. Network Architecture

We detail our network architecture specifications in Fig-
ure 1. Convolution parameters are given as (nf_in, nf_out,
kernel_size, stride, padding). Each convolution (except
those producing final outputs for geometry and color) is fol-
lowed by a Leaky ReLlL.U and batch normalization.

B. Additional Results
B.1. Additional Ablation Studies

We additionally evaluate the effect of the CIELAB color
space that our approach uses for color generation, in com-
parison to RGB space. Table 1 quantitatively evaluates the
color generation, showing that CIELAB space is more ef-
fective, and Figure 2 shows that using CIELAB space al-
lows our approach to capture a greater diversity of colors in
our output predictions.

We also evaluate the geometric reconstruction when
trained with a 3D ¢; loss only in Table 2; here, Baseline-
3D can improve on an ¢; loss only, and ours leverages the
advantages of a view-guided synthesis for the best recon-
struction performance.
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B.2. Runtime Performance

Since our network architecture is composed of 3D con-
volutions, we can generate an output prediction in a sin-
gle forward pass for an input scan, with runtime perfor-
mance dependent on the 3D volume of the test scene as
O(dimx xdimy xdimz). A small scene of size 1.5x3.0x2.6
meters (72 x 152 x 128 voxels), inference time is 0.33
seconds; a medium scene of size 2.8 x 3.9 x 2.6 meters
(140 x 196 x 128 voxels) takes 0.86 seconds, and a large
scene of size 6.0 x 6.6 x 2.6 meters (300 x 328 x 128 voxels)
takes 2.4 seconds.

Memory footprint During training, our approach oper-
ates with a memory footprint of 5.5GB with a batch size of
2. At test time, the memory footprint of the small, medium,
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and large scenes previously mentioned is 0.7GB, 1.7GB,
and 6GB respectively. Very large test scenes can be realized
by running our method by chunks of the receptive field size;
for instance, our largest test scene spans 34.5 x 49.2 x 2.6
meters (1727 x 2461 x 128 voxels), with a memory footprint
of 1.4GB in this fashion.

B.3. Qualitative Results

We provide additional qualitative results of colored re-
construction of Matterport3D [1] scans and ShapeNet [2]
chairs in Figures 3 and 4, respectively. As can be seen, our
method consistently generates sharper results compared to
the baseline methods. In Figure 3, the comparison to [4]
is shown. Since the approach does not complete geometry,
we provide our predicted geometry as input. In contrast to
our method, it is not properly estimating color tones like for
the green chair in the bottom row of the figure. Figure 4
shows more examples for our experiments on the ShapeNet
dataset in comparison to Im2Avatar [6], PIFu [5] and Tex-
ture Fields [4].

Additionally, we show qualitative comparisons of the ge-
ometric completion of our approach on Matterport3D [1]
scans in Figure 5, in comparison to SG-NN [3]. Both meth-
ods were trained on our Matterport3D chunks data, where
inputs were composed of 30% of frames available, and tar-
gets of 50% of frames available; test target scenes are visu-
alized with all available frames. The direct 3D supervision
guiding SG-NN contains fused errors from small camera es-
timation misalignments and depth noise (small shifts in the
target TSDF), resulting in a tendency to produce a few vis-
ible seams in the resulting reconstructions. In contrast, our
view-guided synthesis helps to avoid these artifacts, produc-
ing more compelling scene geometry.



Figure 1: Network architecture specification. Given an incomplete RGB-D scan, we take its 3D geometry and color as input,
and leverage a fully-convolutional neural network to predict the complete 3D model represented volumetrically for both

geometry and color.

Table 1: Comparison of our approach using CIELAB color space to using RGB on Matterport3D [I] scans. CIELAB

Input 3D Colors

Input 3D Geometry

Conv3(1, 10,5, 1, 2)

Conv3(10,20,4,2, 1)

Conv3(20,20,3, 1, 1)

Conv3(4,20,5.1,2)

Conv3(20,40,4,2, 1)

Conv3(40,40,3,1, 1)

Conv3(60, 80, 4,2, 1)

Conv3(80, 80, 3, 1, 1) [x8]

Conv3(80, 40,3, 1, 1)

Conv3(20,40,4,2, 1)

Conv3(20,20.4,2, 1)

Conv3(40, 40,3, 1, 1)

Conv3(40, 40,3, 1, 1) [x8]

Conv3(40,20,3,1, 1)

Conv3(20,20,3,1, 1)

Conv3(20,10,3,1, 1)

Conv3(10,1,3, 1, 1)

3D Geometry

Conv3(40,20,3,1, 1)

Conv3(20, 10,3, 1, 1)

Conv3(10,3,3, 1, 1)

Conv3(4,8,5,1,2)

Conv3(8,8,3,1, 1)

Conv3(8, 16,3, 1, 1)

Conv3(16,32,3,1, 1)

Conv3(32, 32,3, 1, 1) [x8]

Conv3(32,16,3,1, 1)

Conv3(16, 16,3, 1, 1)

Conv3(16,8,3, 1, 1)

Conv3(8,4,3,1,1)

Conv3(4,3,3,1, 1)

3D Colors

Method SSIM (1) | Feature-¢; (1) | FID (})
Using RGB 0.702 0.222 58.8
Ours 0.709 0.219 56.03

produces more effective color generation.
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Using RGB

Figure 2: Qualitative comparison of our approach using CIELAB color space vs RGB color space on Matterport3D [ 1] scans.
Using CIELAB space allows us to capture more diversity in output color generation.

Matterport3D
Method IoU (1) | Recall (1) | Chamfer Dist. ({)
3D /; loss only 0.31 0.58 0.02
Baseline-3D 0.33 0.58 0.04
Ours 0.39 0.64 0.01
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Figure 3: Additional qualitative evaluation of colored reconstruction on Matterport3D [ 1] scans.
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Figure 4: Additional qualitative evaluation of colored reconstruction of our method against Im2Avatar [6], PIFu [5], and
Texture Fields [4] (run on geometry predicted by our method) on ShapeNet [2] chairs.



Figure 5: Qualitative comparison of geometric completion results on Matterport3D [1] scans. Our view-guided approach
mitigates learning from artifacts in the fused 3D reconstruction of the scenes (e.g., small frame misalignments, which can
cause seams such as in the SG-NN reconstructions), producing more accurate scene geometry.



