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A.1. Appendix
In this Appendix, we first provide a brief theoretical anal-

ysis of our finding from the perspective of theoretical er-
ror of domain adaptation. we then show the estimations
of using different thresholds for the intuitive solution. Fur-
thermore, we show the negative linear correlation between
distribution shift and accuracy based on the other two clas-
sifiers (i.e., DenseNet-121 and VGG-16). We also use the
proposed regression methods to predict their accuracy on
three unseen test sets. In addition, we detail the transforma-
tions used to generate the meta dataset. Along with this, we
study the impact of image transformation and background
change on the diversity of the meta set. Last, we provide
more visual examples of sample sets for natural image clas-
sification and digit classification.

A.2. Theoretical analysis
We use the implications in domain adaptation: dataset

divergence degrades model accuracy. Here, we give a brief
analysis of our findings from the perspective of theoretical
error of domain adaptation.
Theorem 1 (Ben-David et al., 2010 [1]) Let H be the hy-
pothesis class. Given two domains S and T , we have

∀h ∈ H, εT (h) ≤ εS(h) +
1

2
dH∆H(S, T ) + C. (1)

εS(h) is the expected error on source images. dH∆H(S, T )
defines the discrepancy distance between two domains S
and T w.r.t. a hypothesis set H. C is the shared expected
loss defined as minh∈H εS (h, fS) + εT (h, fT ) where fS
and fT are labeling functions on source and target respec-
tively. C does not depend on particular h and is expected to
be negligible [2]. In AutoEval, the training set and learned
classifier are given and fixed, so the target domain T is the
only factor that determines the bound: different test sets in-
duce different discrepancy distances, giving different upper
bounds. In our work, we empirically observe that classifier
accuracy decreases in proportion to Fréchet Distance be-
tween the source training set and target sets (sample sets).
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Figure A-1. RMSE of predicted score under different thresholds.
We observe that it is very threshold-sensitive. Our method does not
depend on such a parameter and yields much more stable results.

A.3. Intuitive solution
In Fig. A-1, we show the estimated results of the “pre-

dicted score” based intuitive solution with different thresh-
olds. We observe 1) this baseline is sensitive to the thresh-
old. 2) The optimal thresholds differ significantly for the
two tasks. The baseline can make a good prediction when
an optimal threshold is used. However, it is very threshold-
sensitive, and it is infeasible to select the threshold because
1) test labels are unavailable and 2) the test set keeps chang-
ing. Our method does not depend on such a parameter and
yields much more stable results. That said, it would be inter-
esting to address this drawback in the context of AutoEval.

A.4. Study on different classifiers
A.4.1. Distribution shift vs. Accuracy

In the proof of concept (Section 3.2 of main text), we ob-
serve a very strong negative correlation between classifier
(ResNet-50) accuracy and distribution shift (Fréchet dis-
tance): the Spearman’s Rank Correlation (ρ)is about−0.91.
It means the strong negative monotonic correlation between
accuracy and Fréchet distance.

Here, we show the relationship between distribution and
accuracy based on the other classifiers, i.e., Desenet-121,
and VGG-16. We show the results on the natural image
classification in Fig. A-2. We observe that the range of dis-



Fréchet distance (Desenet-121) Fréchet distance (VGG-16)
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Figure A-2. Relationship between the distribution shift and accu-
racy based on different classifiers. We show the results on natural
image classification. Each point represents a sample set of the
meta set. For each classifier, we observe a very strong negative
correlation between its accuracy and distribution shift.
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Figure A-3. Absolute errors (%) of two regression methods for
three classifiers on three unseen test sets. From left to right is
ResNet-50, DenseNet-121, and VGG-16, respectively. We ob-
serve the two regression methods are able to make reasonably good
predictions for each classifier on three test sets.

tribution shift (horizontal axis) can be varied with different
classifiers. However, the overall relationship between the
classifier’s accuracy and distribution shift is the same. They
have a very strong negative correlation: the rank correlation
is −0.942 and −0.947 using DenseNet-121 and VGG-16,
respectively. That is, the classifier tends to achieve a low
accuracy on the sample set which has a high distribution
shift with training set Dori. Moreover, the strong negative
linear correlation also indicates that it is feasible to predict
classifier accuracy based on the distribution difference be-
tween training and test set.

A.4.2. Accuracy estimation for different classifiers

We use two regression methods to predict the accuracy
of different classifiers on natural image classification. We
train DenseNet-121 and VGG-16 on COCO training set,
and test them on three unseen test sets. i.e., PASCAL, Cal-
tech, and ImageNet. For each classifier, we use it to extract
features needed for two regression models on every sample
set. Then, we train two regression models. In Fig. A-3, we
report the accuracy estimated results for each classifier. We
observe the two methods are able to make accurate predic-
tions for each classifier on three test sets.

Operation Description Magnitude

AutoContrast Maximize the image contrast, by
making the darkest pixel black and
lightest pixel white.

Rotate Rotate the image magnitude degrees. [-30, 30]
Color Adjust the color balance of the im-

age. A magnitude=0 gives a black &
white image, whereas magnitude=1
gives the original image.

[0.1, 1.9]

Brightness Adjust the brightness of the image.
A magnitude=0 gives a black im-
age, whereas magnitude=1 gives the
original image.

[0.1, 1.9]

Sharpness Adjust the sharpness of the image.
A magnitude=0 gives a blurred im-
age, whereas magnitude=1 gives the
original image.

[0.1, 1.9]

TranslateX/Y Translate the image in the horizon-
tal (vertical) direction by magnitude
number of pixels.

[-150, 150]

Cutout Set a random square patch of side-
length magnitude pixels to gray.

[0, 60]

ShearX/Y Shear the image along the horizontal
(vertical) axis with rate magnitude.

[-0.3, 0.3]

Equalize Equalize the image histogram.
ColorTemp Change the temperature of an image

to a given magnitude in Kelvin.
[1000,
11000]

Table A-1. List of all image transformations that we choose from
during the meta set construction. The magnitude range of each
transformation is shown in the third column. Some transforma-
tions do not use the magnitude information (e.g., AutoConstrast).

A.5. Meta set study

A.5.1. Image transformation

During meta-set construction, we adopt a two-step pro-
cedure: perform background change, and then image trans-
formations. For the transformation, we use six image trans-
formations, including autoContrast, rotation, color, bright-
ness, sharpness, and translation. In practice, we randomly
select and combine three out of the six transformations. The
image transformations are listed in Table. A-1. We briefly
describe each transformation (the second column), and in-
troduce its magnitude information (the third column).

A.5.2. Meta set diversity

In our work, we use a combination of background change
and three random image transformations for the meta set
construction. Both image transformation and background
can introduce many visual differences, and thus create di-
verse sample sets. Here, we study the impact of these two
techniques on the diversity of the meta set. Specifically, we
construct another three meta sets, 1) Meta set A, construc-
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Figure A-4. Absolute errors (%) of regression methods trained on different meta sets. The four meta sets are, 1) Meta set A, construction
only with background change; 2) Meta set B, construction only with three random image transformations; 3) Meta set C, construction
with background change and only one random image transformation; 4) meta set, construction with background change and three random
image transformations. The classifier used in this experiment is ResNet-50.

seed set sample set 1 sample set 3sample set 2

sample set 4 sample set 5 sample set 7sample set 6

sample set 8 sample set 9 sample set 11sample set 10

sample set 12 sample set 13 sample set 15sample set 14Figure A-5. Seed set and examples of fifteen sample sets for the task of natural image classification. The seed set is sampled from the same
distribution as the original training set; they share the same classes but do not have image overlap. The sample sets are generated from the
seed by background replacement and image transformations. The sample sets exhibit distinct data distributions, but inherit the foreground
objects from the seed, and hence are fully labeled.

tion only with background change; 2) Meta set B, construc-
tion only with three random image transformations; 3) Meta
set C, construction with background change and only one
random image transformation. Using different meta sets,
we learn different regression models and then compare their
estimation accuracy in Fig. A-4.

We observe both regression methods produce a high ab-
solute error when using meta set A for training. This indi-

cates only changing background cannot introduce sufficient
visual changes for constructing a diverse meta set. More-
over, only using image transformations (Meta set B) also
insufficient. We note that network regression gains more de-
sirable accuracy when meta set becomes more diverse (us-
ing more transformations). The comparison demonstrates
that learning a mapping function from the distribution shift
to the classifier’s accuracy requires a diverse meta set.
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Figure A-6. Seed set and examples of seven sample sets for the task of digit classification.

A.5.3. Sample set example

We show more visual examples of sample sets for natu-
ral image classification and digit classification in Fig. A-5
and Fig. A-6, respectively. Each sample set is generated
by background change and a combination of three image
transformations. Compared with the seed set, each sample
set has many visual differences. Thus, each sample set ex-
hibits a distinct data distribution. Moreover, the foreground
object is preserved, so the sample set is fully labeled.

A meta set consists of many diverse sample sets. With it,
we can learn robust regression models to predict classifier
accuracy based on distribution-related statistics (mean and
covariance in this work).
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