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A. Attack Methods
In this part, we outline the details of the adopted attack

methods in this paper. For simplicity, we use l(x, y) to no-
tate the loss function for attack which inherently connects
to the negative log data likelihood, e.g., the cross entropy in
image classification, the pairwise feature distance in open-
set face recognition, and the weighted sum of the bounding-
box regression loss and the classification loss in object de-
tection.

FGSM [5] crafts an adversarial example under the `∞
norm as

xadv = x + ε · sign(∇xl(x, y)), (1)

FGSM can be extended to an `2 attack as

xadv = x + ε · ∇xl(x, y)

‖∇xl(x, y)‖2
. (2)

In all experiments, we set the perturbation budget ε as
16/255.

BIM [7] extends FGSM by taking iterative gradient up-
dates:

xadv
t+1 = clipx,ε

(
xadv
t + η · sign(∇xl(x

adv
t , y))

)
, (3)

where clipx,ε guarantees the adversarial example to satisfy
the `∞ constraint. For all the iterative attack methods, we
set the number of iterations as 20 and the step size η as
1/255.

PGD [8] complements BIM with a random initialization
for the adversarial examples (i.e., xadv

0 is uniformly sampled
from the neighborhood of x).

MIM [2] introduces a momentum term into BIM as

gt+1 = µ · gt +
∇xl(x

adv
t , y)

‖∇xl(x
adv
t , y)‖1

, (4)

where µ refers to the decay factor and is set as 1 in all ex-
periments. Then, the adversarial example is calculated by

xadv
t+1 = clipx,ε(x

adv
t + η · sign(gt+1)). (5)
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We adopt the same hyper-parameters as in BIM.
DIM [10] relies on a stochastic transformation function

to craft adversarial examples, which can be represented as

xadv
t+1 = clipx,ε

(
xadv
t + η · sign(∇xl(T (xadv

t ; p), y))
)
, (6)

where T (xadv
t ; p) refers to some transformation to diversify

the input with probability p.
TIM [3] integrates the translation-invariant method into

BIM by convolving the gradient with the pre-defined kernel
W as

xadv
t+1 = clipx,ε

(
xadv
t + η · sign(W ∗ ∇xl(x

adv
t , y))

)
. (7)

C&W adopts the original C&W loss [1] based on the
iterative mechanism of BIM to perform attack in classifica-
tion tasks. In particular, the loss takes the form of

lcw = max(Z(xadv
t )y −max

i 6=y
Z(xadv

t )i, 0), (8)

where Z(xadv
t ) is the logit output of the classifier.

SPSA [9] estimates the gradients by

ĝ =
1

q

q∑
i=1

l(x + σui, y)− l(x− σui, y)

2σ
· ui, (9)

where {ui}qi=1 are samples from a Rademacher distribu-
tion, and we set σ = 0.001 and q = 64. Besides, l(x, y) =
Z(x)y − maxi 6=y Z(x)i is used in our experiments rather
than the cross entropy loss. We take an Adam [6] optimizer
with 0.01 learning rate to apply the estimated gradients.

B. More Experiment Details
For `2 threat model, we adopt the normalized `2 distance

¯̀
2(a) = ‖a‖2√

d
as the measurement, where d is the dimen-

sion of a vector a. The decay factors of MIM, TIM, and
DIM are 1.0.

In ImageNet classification, we apply Gaussian blur upon
the sampled uniform noise with 0.03 probability, and then



use the outcome to perturb the training data. The technique
can enrich the training perturbations with low-frequency
patterns, promoting the adversarial detection sensitiveness
against diverse kinds of adversarial perturbations.

To attack the open-set face recognition system in the
evaluation phase, we find every face pair belonging to the
same person, and use one of the paired faces as x and the
feature of the other as y to perform attack. The loss func-
tion for such an attack is the `2 distance between y and
the feature of x (as mentioned in Sec A). As the poste-
rior predictive is not useful in such an open-set scenario,
we perform Bayes ensemble on the output features and then
leverage the outcomes to make decision. Due to the lim-
ited GPU memory, we attack the deterministic features of
the MC dropout baseline instead of the features from Bayes
ensemble, while the uncertainty estimates are still estimated
based on 20 stochastic forward passes with dropout enabled.

In object detection, we adopt the YOLOV5-
s architecture, there are three feature output heads
(BottleneckCSP modules) to deliver features in various
scales. Thus, we make these three heads be Bayesian when
implementing LiBRe. During inference, we average the
features calculated given different parameter candidates to
obtain an assembled feature to detect objects, which assists
us to bypass the potential difficulties of directly assembling
the object detection results.

C. Generalization to Score-based Attack
We additionally concern whether LiBRe can generalize

to the adversarial examples generated by score-based at-
tacks, which usually present different characteristics from
the gradient-based ones. We leverage the typical SPSA [9]
to conduct experiments on ImageNet, getting 0.969 detec-
tion AUROC. This further evidences our attack agnostic de-
signs.

D. Detect More Ideal Attacks
At last, we evaluate the adversarial detection ability of

LiBRe on more ideal attacks. We add the constraint that
the generated adversarial examples should also have small
predictive uncertainty into the existing attacks. This means
that the attacks can jointly fool the decision making and
uncertainty quantification aspects of the model. We add
an uncertainty minimization term upon the original attack
objective to implement this. We feed the crafted adversar-
ial examples into LiBRe to assess if they can be identified.
On ImageNet, we obtain the following adversarial detection
AUROCs: 0.9996, 0.2374, 0.0363, 0.2211, 0.1627, 0.1990,
0.9998, 0.9627, 0.2537, and 0.2213 for FGSM, BIM, C&W,
PGD, MIM, TIM, DIM, FGSM-`2, BIM-`2, and PGD-`2,
respectively.

The results reveal that LiBRe is likely to be defeated if

being fully exposed to the attackers. But it is also no doubt
that LiBRe is powerful enough if keeping opaque to the
attack algorithms as the pioneering work [4]. We believe
that introducing adversarial training mechanism into LiBRe
would significantly boost the ability of detecting these ideal
attacks, and we leave it as future work.
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