Appendix for: LiBRe: A Practical Bayesian Approach
to Adversarial Detection

Zhijie Deng!, Xiao Yang!, Shizhen Xu?, Hang Su'*, Jun Zhu'*
1 Dept. of Comp. Sci. and Tech., BNRist Center, Institute for Al, Tsinghua-Bosch Joint ML Center, THBI Lab

! Tsinghua University, Beijing, 100084, China

2 Real Al

{dz317,yangxiaol9}@mails.tsinghua.edu.cn, shizhen.xu@realai.ai, {suhangss,dcszj}@tsinghua.edu.cn

A. Attack Methods

In this part, we outline the details of the adopted attack
methods in this paper. For simplicity, we use I(x, y) to no-
tate the loss function for attack which inherently connects
to the negative log data likelihood, e.g., the cross entropy in
image classification, the pairwise feature distance in open-
set face recognition, and the weighted sum of the bounding-
box regression loss and the classification loss in object de-
tection.

FGSM [5] crafts an adversarial example under the /.,
norm as

' =z + ¢ - sign(Vyl(z, y)), (1)

FGSM can be extended to an ¢ attack as

adv vwl(mv y)
T Nl )l ?
In all experiments, we set the perturbation budget € as
16/255.
BIM [7] extends FGSM by taking iterative gradient up-

dates:

zi = clip,, . (x 2 + - sign(Val(23,y))), )

where clip,, . guarantees the adversarial example to satisfy
the /., constraint. For all the iterative attack methods, we
set the number of iterations as 20 and the step size 1 as
1/255.

PGD [&] complements BIM with a random initialization
for the adversarial examples (i.e., z3Y is uniformly sampled
from the neighborhood of ).

MIM [2] introduces a momentum term into BIM as
Val(@i®, )
[Val(z adv,y)lll

where p refers to the decay factor and is set as 1 in all ex-
periments. Then, the adversarial example is calculated by

git1 = -Gt + “4)

adv adv

x3l = clipg (™ + 1 - sign(ge+1))- ()

*Corresponding author

We adopt the same hyper-parameters as in BIM.
DIM [10] relies on a stochastic transformation function
to craft adversarial examples, which can be represented as

i) = clip,, (@} + 1 sign(Val (T(z}";p), 1)), (6)

where T'(x3%; p) refers to some transformation to diversify
the input with probability p.

TIM [3] integrates the translation-invariant method into
BIM by convolving the gradient with the pre-defined kernel
W as

i) = clip,, . (a} i+ 0 - sign(Wx Val(i®,y))). (D)

C&W adopts the original C&W loss [1] based on the
iterative mechanism of BIM to perform attack in classifica-
tion tasks. In particular, the loss takes the form of

lew = max(Z(z2%), — m;x Z(x2);,0), (8)
y

where Z(23%) is the logit output of the classifier.
SPSA [9] estimates the gradients by

1l + oug,y) — (e — ou, y)
~ - K ) . i 9
a= Zj o i, (9)

where {u;}{_, are samples from a Rademacher distribu-
tion, and we set o = 0.001 and ¢ = 64. Besides, I(x,y) =
Z(x), — max;y Z(x); is used in our experiments rather
than the cross entropy loss. We take an Adam [6] optimizer
with 0.01 learning rate to apply the estimated gradients.

B. More Experiment Details

For ¢, threat model, we adopt the normalized /5 distance
ly(a) = o }2 as the measurement, where d is the dimen-
sion of a vector a. The decay factors of MIM, TIM, and
DIM are 1.0.

In ImageNet classification, we apply Gaussian blur upon
the sampled uniform noise with 0.03 probability, and then



use the outcome to perturb the training data. The technique
can enrich the training perturbations with low-frequency
patterns, promoting the adversarial detection sensitiveness
against diverse kinds of adversarial perturbations.

To attack the open-set face recognition system in the
evaluation phase, we find every face pair belonging to the
same person, and use one of the paired faces as « and the
feature of the other as y to perform attack. The loss func-
tion for such an attack is the /o distance between y and
the feature of x (as mentioned in Sec A). As the poste-
rior predictive is not useful in such an open-set scenario,
we perform Bayes ensemble on the output features and then
leverage the outcomes to make decision. Due to the lim-
ited GPU memory, we attack the deterministic features of
the MC dropout baseline instead of the features from Bayes
ensemble, while the uncertainty estimates are still estimated
based on 20 stochastic forward passes with dropout enabled.

In object detection, we adopt the YOLOVS-
s architecture, there are three feature output heads
(BottleneckCSP modules) to deliver features in various
scales. Thus, we make these three heads be Bayesian when
implementing LiBRe. During inference, we average the
features calculated given different parameter candidates to
obtain an assembled feature to detect objects, which assists
us to bypass the potential difficulties of directly assembling
the object detection results.

C. Generalization to Score-based Attack

We additionally concern whether LiBRe can generalize
to the adversarial examples generated by score-based at-
tacks, which usually present different characteristics from
the gradient-based ones. We leverage the typical SPSA [9]
to conduct experiments on ImageNet, getting 0.969 detec-
tion AUROC. This further evidences our attack agnostic de-
signs.

D. Detect More Ideal Attacks

At last, we evaluate the adversarial detection ability of
LiBRe on more ideal attacks. We add the constraint that
the generated adversarial examples should also have small
predictive uncertainty into the existing attacks. This means
that the attacks can jointly fool the decision making and
uncertainty quantification aspects of the model. We add
an uncertainty minimization term upon the original attack
objective to implement this. We feed the crafted adversar-
ial examples into LiBRe to assess if they can be identified.
On ImageNet, we obtain the following adversarial detection
AUROC:s: 0.9996, 0.2374, 0.0363, 0.2211, 0.1627, 0.1990,
0.9998, 0.9627, 0.2537, and 0.2213 for FGSM, BIM, C&W,
PGD, MIM, TIM, DIM, FGSM-/5, BIM-{5, and PGD-/5,
respectively.

The results reveal that LiBRe is likely to be defeated if

being fully exposed to the attackers. But it is also no doubt
that LiBRe is powerful enough if keeping opaque to the
attack algorithms as the pioneering work [4]. We believe
that introducing adversarial training mechanism into LiBRe
would significantly boost the ability of detecting these ideal
attacks, and we leave it as future work.

References

[1] Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In IEEE Symposium on Secu-
rity and Privacy, 2017. 1
[2] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun
Zhu, Xiaolin Hu, and Jianguo Li. Boosting adversarial at-
tacks with momentum. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2018. 1
Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu.
Evading defenses to transferable adversarial examples by
translation-invariant attacks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 1
[4] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and An-
drew B Gardner. Detecting adversarial samples from arti-
facts. arXiv preprint arXiv:1703.00410, 2017. 2
Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572,2014. 1
Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1
Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Ad-
versarial examples in the physical world. arXiv preprint
arXiv:1607.02533, 2016. 1
Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. In International
Conference on Learning Representations (ICLR), 2018. 1
Jonathan Uesato, Brendan O’Donoghue, Aaron van den
Oord, and Pushmeet Kohli. Adversarial risk and the dangers
of evaluating against weak attacks. In International Confer-
ence on Machine Learning (ICML), 2018. 1,2
[10] Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu
Wang, Zhou Ren, and Alan L Yuille. Improving transferabil-
ity of adversarial examples with input diversity. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 1

3

—

[5

—

[6

—_

[7

—

[8

—

[9

—



