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Appendix A. Additional Experiments

In this section, we describe additional implementation

details about our experiments in Section 4. Our evaluation

protocol is consistent with prior works on pretraining visual

representations – we report differences where applicable.

A.1. Image Classification with Linear Models

PASCAL VOC: We use standard data augmentation on im-

ages from both trainval and test split – we resize the

shorter edge to 256 pixels, and take a 224 × 224 center

crop. We normalize images by ImageNet color (RGB mean

= [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]).

Prior works [1–3] train per-class SVMs for C ∈
[2−19, 2−4] ∪ [10−7, 10−2] (26 values), and choose best

SVM based on 3-fold cross-validation. In our initial evalu-

ations, we observed that the best performing SVMs are typ-

ically trained with cost values C ∈ {0.01, 0.1, 1.0, 10.0}.

Based on this observation, we only use these values for

faster evaluation. For training SVMs, we use scikit-learn [4]

with LIBLINEAR [5] backend, default parameters are:

LinearSVC(penalty=‘l2’, dual=True,

max iter=2000, tol=1e-4, class weight={1: 2, -1:

1}, loss=‘squared hinge’).

ImageNet-1k: For data augmentation during training, we

randomly crop 20–100% of the original image size, with a

random aspect ratio in (4/3, 3/4), resize to 224×224, apply

random flip, and normalization by ImageNet color. During

evaluation, we resize the shorter edge to 256 pixels and take

a 224 × 224 center crop. We initialize the weights of the

linear layer as N(0.0, 0.01), and bias values as 0.

Note that we perform a small LR sweep separately for

our VirTex model (ResNet-50 and L = 1, H = 2048), and

ImageNet-supervised models. For Figure 4 best LR values

for VirTex models is 0.3, and ImageNet-supervised models

is 0.1.

Annotation Cost Efficiency: Here, we provide details on

our cost estimates for different methods in Table 1. For la-

bels and masks, we use estimates reported by COCO [6],

and for captions we use estimates reported by nocaps [7],

collected in a similar fashion as COCO.

– Labels: We consider total time of Category Labeling

and Instance Spotting steps in [6] (∼30K hours). This

estimate corresponds to 328K images – we scale it for

COCO Captions train2017 split (118K images).

– Masks: As reported in [6], it takes 22 worker hours

for collecting 1000 instance segmentation masks. We

use this estimate to compute time for ∼860K masks in

COCO train2017 split. The collection of masks is de-

pendent on Category Labeling and Instance Spotting, we

add the time for collecting labels in our total estimate.

– Captions: We use the median time per caption (39.2 sec-

onds) as reported in [7] (∼151K captions) to estimate the

cost of collecting (118K ×5) captions in COCO.

Data Efficiency: We train our ImageNet-supervised mod-

els on randomly sampled subsets of ImageNet (1%, 2% 5%,

10%, 20%, 50%). We sample training examples such that

the class distribution remains close to 100% ImageNet. For

VirTex models, we randomly sample 10%, 20%, 50%, and

100% of COCO Captions [8] – we do not use any class la-

bels to enforce uniform class distribution. Note that this

may put ImageNet-supervised models at an advantage.

We train our ImageNet-supervised models by following

the exact setup used to train the publicly available ResNet-

50 model in torchvision. We use SGD with momentum

0.9 and weight decay 10−4. We use a batch size of 256, and

perform distributed training across 8 GPUs (batch size 32

per GPU). We train for 90 epochs, with an initial learning

rate 0.1, that is divided by 10 at epochs 30 and 60. We keep

the number of training epochs fixed for models trained on

smaller subsets of ImageNet (else they tend to overfit). For

VirTex models, we scale training iterations according to the

size of the sampled training set.

Comparison: ImageNet vs. Cropped COCO. Note that

the ImageNet images mostly contain a single object (com-

monly called iconic images). On the other hand, COCO

dataset contains ∼2.9 object classes and ∼5.7 instances per

image. It may seem that VirTex requires fewer images than

ImageNet-supervised models as they contain multiple ob-

jects per image. Here, we make an additional comparison
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Figure 1: Bicaptioning vs. Masked Language Modeling:

We compare VOC07 mAP of Bicaptioning and Masked LM

pretraining tasks. We observe that Masked LM converges

slower than Bicaptioning, indicating poor sample efficiency.

Backbone

VOC07 IN-1k PASCAL VOC Detection

mAP Top-1 APbbox
all

APbbox
50

APbbox
75

ResNet-50 88.3 53.2 55.2 81.2 60.8

ResNet-50 w2× 88.5+0.2 52.9–0.3 56.6+1.4 82.0+0.8 62.8+2.0

ResNet-101 88.7+0.4 52.0–1.2 57.9+2.7 82.0+0.8 63.6+2.8

Table 1: Additional Evaluations for Backbone Ablations.

We compare VirTex models (L = 1, H = 1024) with dif-

ferent visual backbones. We observe that larger backbones

generally improve downstream performance.

to control the varying image statistics between datasets.

Specifically, we crop objects from COCO images and

create a dataset of 860K iconic images. We randomly

expand bounding boxes on all edges by 0–30 pixels be-

fore cropping, to mimic ImageNet-like images. We train

a ResNet-50 with same hyperparameters as ImageNet-

supervised models, described above. It achieves 79.1

VOC07 mAP (vs. 88.7 VirTex). This shows that the data-

efficiency of VirTex does not entirely stem from using scene

images with multiple objects.

A.2. Ablations

Bicaptioning vs. Masked Language Modeling. In our

pretraining task ablations (Section 4.2) we observed that

Masked Language Modeling performs quite worse than all

other pretraining tasks on downstream linear classification

performance. This issue arises from the poor sample effi-

ciency of Masked LM, discussed in Section 3

For more evidence, we inspect VOC07 mAP of Masked

LM, validated periodically during training. In Figure 1,

we compare this with VOC07 mAP of Bicaptioning. Both

models use L = 1, H = 2048 textual heads. We find that

Masked LM indeed converges slower than bicaptioning, as

it receives weaker supervision per training caption – only

corresponding to masked tokens. We believe that a longer

training schedule may lead to MLM outperforming bicap-

tioning, based on its success in language pretraining [9].

_BASE_: "Base -RCNN -FPN.yaml"

INPUT:

FORMAT: "RGB"

DATASETS:

TRAIN: (" coco_2017_train ",)

TEST: (" coco_2017_val ",)

MODEL:

WEIGHTS: "Loaded externally"

MASK_ON: True

PIXEL_MEAN: [123.675 , 116.280 , 103.530]

PIXEL_STD: [58.395 , 57.120 , 57.375]

BACKBONE:

FREEZE_AT: 0

RESNETS:

DEPTH: 50

NORM: "SyncBN"

STRIDE_IN_1X1: False

FPN:

NORM: "SyncBN"

SOLVER:

IMS_PER_BATCH: 16

BASE_LR: 0.02

STEPS: (120000 , 160000)

MAX_ITER: 180000

TEST:

PRECISE_BN:

ENABLED: True

Table 2: COCO Instance Segmentation: Detectron2 con-

fig parameters that differ from base config file.

Additional Evaluation: Backbone Ablations. In our

backbone ablations, we observed that larger visual back-

bones improve VOC07 classification performance. How-

ever, the performance trend for ImageNet-1k linear classifi-

cation is opposite. We think this is an optimization issue –

the hyperparameters chosen for ResNet-50 may not be opti-

mal for other backbones. To verify our claims, we evaluate

these models on PASCAL VOC object detection.

In Table 1, we observe that the performance trends of

PASCAL VOC object detection match with VOC07 classi-

fication. Hence, we conclude that using larger visual back-

bones can improve downstream performance.

A.3. Fine­tuning Tasks for Transfer

We described the main details for downstream fine-

tuning tasks in Section 4.3. We provide config files in De-

tectron2 [10] format to exactly replicate our downstream

fine-tuning setup for COCO (Table 2), PASCAL VOC (Ta-

ble 3), LVIS (Table 4). We apply modified hyperparameters

on top of base config files available at:

github.com/facebookresearch/detectron2 @ b267c6

iNaturalist 2018 Fine-grained Classification: We use data

augmentation and weight initialization same as ImageNet-

1k linear classification (Section A.1). Despite a long-tailed

distribution like LVIS, we do not perform class balanced

resampling, following the evaluation setup of MoCo [11].

LVIS v0.5 Instance Segmentation: We already evaluated

VirTex and baseline methods on LVIS Instance Segmenta-



_BASE_: "Base -RCNN -C4.yaml"

INPUT:

FORMAT: "RGB"

MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640,

672, 704, 736, 768, 800)

DATASETS:

TRAIN:(" voc_2007_trainval "," voc_2012_trainval ")

TEST: (" voc_2007_test ",)

MODEL:

MASK_ON: False

WEIGHTS: "Loaded externally"

PIXEL_MEAN: [123.675 , 116.280 , 103.530]

PIXEL_STD: [58.395 , 57.120 , 57.375]

BACKBONE:

FREEZE_AT: 0

RESNETS:

DEPTH: 50

NORM: "SyncBN"

STRIDE_IN_1X1: False

FPN:

NORM: "SyncBN"

ROI_HEADS:

NUM_CLASSES: 20

SOLVER:

IMS_PER_BATCH: 16

BASE_LR: 0.02

STEPS: (18000 , 22000)

MAX_ITER: 24000

WARMUP_ITERS: 100

TEST:

PRECISE_BN:

ENABLED: True

Table 3: PASCAL VOC Object Detection: Detectron2

config parameters that differ from base config file.

tion task using LVIS v1.0 train and val splits. One of

our baselines, MoCo, conducted this evaluation using LVIS

v0.5 splits. For completeness, we report additional results

on LVIS v0.5 split. The main changes in config (Table 4)

following original LVIS v0.5 baselines are: NUM CLASSES:

1230 and SCORE THRESHOLD TEST: 0.0

Results are shown in Table 5. We observe the VirTex sig-

nificantly outperforms all baseline methods on LVIS v0.5

split, similar to evaluation on LVIS v1.0 split.

A.4. Selecting Best Checkpoint by VOC07 mAP

As described in Section 3, we observed that image cap-

tioning performance has an imprecise correlation with per-

formance on downstream vision tasks. Hence, we select our

best checkpoint based on VOC07 classification mAP.

In Figure 2, we compare validation metrics of our best

VirTex model (ResNet-50, L = 1, H = 2048). We ob-

serve the trends of VOC07 mAP and CIDEr [12] score of

the forward transformer decoder. We observe that an im-

provement in captioning performance indicates an improve-

ment in downstream performance. However these are not

strongly correlated – the best performing checkpoints ac-

cording to these metrics occur at different iterations: 492K

according to VOC07 mAP (88.7), and 480K according to

_BASE_: "Base -RCNN -FPN.yaml"

INPUT:

FORMAT: "RGB"

DATASETS:

TRAIN: (" lvis_v1 .0 _train",)

TEST: (" lvis_v1 .0_val",)

DATALOADER:

SAMPLER_TRAIN: "RepeatFactorTrainingSampler"

REPEAT_THRESHOLD: 0.001

MODEL:

WEIGHTS: "Loaded externally"

MASK_ON: True

PIXEL_MEAN: [123.675 , 116.280 , 103.530]

PIXEL_STD: [58.395 , 57.120 , 57.375]

BACKBONE:

FREEZE_AT: 0

RESNETS:

DEPTH: 50

NORM: "SyncBN" # For IN-sup: "FrozenBN"

STRIDE_IN_1X1: False

FPN:

NORM: "SyncBN" # For IN-sup: ""

ROI_HEADS:

NUM_CLASSES: 1230

SCORE_THRESH_TEST: 0.0

SOLVER:

IMS_PER_BATCH: 16

BASE_LR: 0.02

STEPS: (120000 , 160000)

MAX_ITER: 180000

TEST:

DETECTIONS_PER_IMAGE: 300

PRECISE_BN:

ENABLED: True

Table 4: LVIS Instance Segmentation: Detectron2 config

parameters that differ from base config file.

Method
Pretrain
Images

LVIS v0.5 Instance Segmentation

APbbox
all

APbbox
50

APbbox
75

1) Random Init 22.5 34.8 23.8

2) IN-sup 1.28M 24.5 38.0 26.1

3) IN-sup-50% 640K 23.7–0.8 36.7–1.3 25.1–1.0

4) IN-sup-10% 128K 20.5–4.0 32.8–6.2 21.7–5.2

5) MoCo-IN 1.28M 24.1–0.4 37.4–0.6 25.5–0.6

6) MoCo-COCO 118K 23.1–1.4 35.3–2.7 24.9–1.2

7) VirTex 118K 25.4+0.9 39.0+1.0 26.9+0.8

Table 5: Downstream Evaluation: LVIS v0.5 Instance

Segmentation. We compare VirTex with different pretrain-

ing methods for LVIS v0.5 Instance Segmentation. All

methods use Mask R-CNN with ResNet-50-FPN backbone.

Performance gaps with IN-sup are shown on the side. The

trends are similar to LVIS v1.0 (Table 3) – VirTex signifi-

cantly outperforms all baseline methods.

CIDEr (92.4). Hence, we select the best checkpoint based

on PASCAL VOC linear classification performance. We use

this task as a representative downstream vision task for eval-

uation due to its speed and simplicity.
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Figure 2: Validation metrics: VOC07 mAP and CIDEr.

We compare VOC07 mAP and CIDEr score of VirTex

(ResNet-50, L = 1, H = 2048) model. We observe that

captioning performance has a positive, yet imprecise corre-

lation with downstream performance on vision tasks.

Appendix B. Decoder Attention Visualizations

for Caption Predictions

In Figure 3 and Figure 4, we show more qualitative ex-

amples showing decoder attention weights overlaid on input

images. All captions are decoded from L = 1, H = 512
VirTex model using beam search. We normalize the atten-

tion masks to [0, 1] to improve contrast for better visibility.
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a woman is riding a horse over an obstacle

a bird flying over the air near the ocean

a cat laying on a bed in a bookshelf

an airplane flying over a body of a river

a teddy bear sitting in front of orange juice

a laptop computer sitting on top of a desk

a plate with a sandwich and cup of coffee

Figure 3: Attention visualizations per time step for predicted caption. We decode captions from the forward transformer of

L = 1, H = 512 VirTex model using beam search.



a red truck driving down

a snow covered road

a laptop computer

sitting on top of a desk

a group of kites being

flown in the park

two zebras are grazing

in a fenced in area

a cat laying on a pair

of blue shoes

a bus parked at the side

of the road

a horse drawn carriage

being pulled by two

horses

a woman on a wave board

in the ocean

a pizza on a cutting

board on a pizza

a person riding a

motorcycle on a dirt

road

an orange and white cat

laying on a desk

a bowl of broccoli and

cauliflower in a lot

a dog in the back of a

red truck

a clock hanging from the

ceiling in the ceiling

a bird perched on top of

a tree branch

a group of people

playing tennis on a

tennis court

a group of people riding

motorcycles down the

road

a white refrigerator

freezer sitting in a

kitchen next to a table

a living room filled

with furniture and a

fireplace

a person on a sufboad

riding a wave in the

ocean

a bird sitting on a

branch of a tree

a clock on a building

with a clock on it

a woman on skis in the

side of a snow

a street sign on it’s

edge of the road

a bathroom with a sink

and toilet, toilet

Figure 4: We decode captions from the forward transformer of L = 1, H = 512 VirTex model using beam search. For the

highlighted word, we visualize the decoder attention weights overlaid on the input image.


