
A. Appendix

A.1. Implementation of Dissimilarity Network

The dissimilarity module is derived from six unique
components: two encoding architectures, one fusion mod-
ule, and three decoder blocks. These components are re-
used across the network to build the final architecture. Fig-
ure 3 shows a high-level view of all the components inter-
connected.

We follow the naming convention used in [16] and
Pix2PixHD [37] to explain each architecture. Let ck − sn
denote a 3x3 Convolution-RELU layer with k filters and
stride n. dk denote a 7x7 Convolution-RELU layer with
k filters and stride 1. m2 denotes a 2x2 max pooling
layer. sp− 19 denotes a SPADE normalization-SELU layer
[29, 20], which uses the 19 channels from the predicted se-
mantic map as one of its inputs. tk denotes a 2x2 transposed
convolution with k filters. Lastly, r2 denote a 1x1 Convolu-
tion layer with 2 filters

Input and Generated Image Encoder. The first en-
coder uses the same base architecture as VGG16 [33]:
c64−s1, c64−s1, m2, c128−s1, c128−s1, m2, c256−s1,
c256−s1, c256−s1, m2, c512−s1, c512−s1, c512−s1.
This architecture outputs four feature maps, one after each
resolution. In other words, we output the features after the
max pooling layer, as well as the final feature map from the
encoder. This encoder shares weights for encoding both the
input and synthesized image.

Semantic and Dispersion Maps Encoder. This other
encoder architecture is divided as: d32, c64 − s2, c128 −
s2, c256 − s2. The encoder outputs the feature maps after
each convolutional layer block. Note that we use different
weights to encode semantic and uncertainty information.

Fusion Module. The fusion module concatenates the
input, synthesized, and semantic feature maps at each reso-
lution level. We then run a 1x1 convolution to extract im-
portant areas in the map, as well as reducing complexity.
Finally, we perform a point-wise correlation between the
dispersion feature map and the resulting map from the 1x1
convolution. This module will output a total of four feature
maps - one for each resolution.

Decoder Blocks. There are four decoder blocks used in
the dissimilarity network. The first and second one follow
the same structure: c256− s1, sp− 19, c256− s1, sp− 19,
t256. The third one is divided as: c384−s1, sp−19, c128−
s1, sp − 19, t1258, while the last one follows: c192 − s1,
sp−19, c64−s1, sp−19, r2. The first decoder block takes
the feature map from the lowest resolution. All subsequent
decoder blocks take as input the concatenation of the feature
map from the fusion module and the output of the previous
decoder block.

The dissimilarity network was trained for fifty (50)
epochs, using the Adam [19] solver and a learning rate of

0.0001. We reduce the learning rate on plateau with a pa-
tience of 10 epochs. Additionally, we augment the training
images by flipping around the vertical axis and normalizing
them using mean and standard deviation values from Ima-
geNet [32].

A.2. Re-Implementation of Image Re-Synthesis

Image Re-synthesis [24] is a synthesis-based framework
for anomaly segmentation. It consist of a segmentation
model S, a synthesis model G, and a discrepancy network
D. Given a natural image, the framework will first predict a
semantic label map with S. Then, the synthesis model G will
re-synthesis the semantic map and finally the discrepancy
network D detects meaningful distances caused by misla-
beled objects by comparing the natural and synthesized im-
ages. The method adopts Bayesian SegNet [17] and PSP
Net [40] as its segmentation models and Pix2PixHD [37] as
its synthesis model.

Performance of re-synthesis methods in anomaly seg-
mentation, such as Image Re-synthesis, are highly related to
the quality of the segmentation and synthesis predictions. If
we improve these predictions, the discrepancy network will
have an easier task detecting anomalies.

To ensure that performance differences between our
method and [24] do not come from the differences in
the segmentation or synthesis modules, we re-implemented
Image Re-synthesis with state-of-the-art segmentation and
synthesis networks. Specifically, we replace their segmenta-
tion and synthesis networks with the same networks used in
our framework ([42] for segmentation and [25] for synthe-
sis). By doing so, the only differences between both meth-
ods are our contributions explained in Section 3.

Table 4 shows the differences between our implementa-
tion (Image Resynthesis++) against the results presented in
[24]. In our experiments, we use the same datasets and met-
rics used in the original publication. Specifically, we use
Lost & Found (L&F) [30] (i.e. images in a driving environ-
ment with small road hazards) and Road Anomaly [24] (i.e
online images with anomalous objects located on or near
the road) as our datasets, as well as the area under the curve
for the receiver operating curve (AUC ROC) as our perfor-
mance metric. We also added a variation of Lost & Found,
where we restrict evaluation to the road, as defined by the
ground-truth annotations.

Our implementation achieves better performance across
the different datasets, thus concluding our Image Resyn-
thesis++ to be a stronger baseline when compared to our
framework. The final implementation was submitted to the
Fishyscapes Benchmark (private test set) to ensure equal
comparison in more challenging anomaly dataset, such as
FS Lost & Found and FS Static.

We use the AUC ROC as our performance metric in these
experiments since it was the only metric reported in the



Method L&F L&F Road
(Road Only) Anomaly
↑ AUC ROC

Image Resynthesis 0.82 0.93 0.83
Image Resynthesis++ 0.93 0.99 0.86

Table 4. Image Resynthesis implementation compari-
son. Image Resynthesis++ outperforms the results pre-
sented in [24] using the same datasets (Lost & Found, Road
Anomaly) with the area under the curve for the receiver op-
erating curve (AUC ROC) as the performance metric.

original work. However, as mentioned in Section 4.1, ROC
metrics are not well-suited for highly imbalance problems,
such as anomaly detection, as explained in [5]. Thus, for
our main experiments, we use more reliable metrics for im-
balance problems, such as average precision (AP) and false
positive rate at 95% true positive rate (FPR95).

Note that the Road Anomaly Dataset was not used in
our main experiments, as it only contains sixty (60) images,
which are not enough to ensure proper generalization abil-
ities within anomaly segmentation. Additionally, the an-
notations are not consistent for the anomaly objects. For
example, a rock in the middle of the road is labeled as an
anomaly. However, the same style of rock next to the road
is classfied as an inlier.

A.3. Computational Complexity

Table 5 shows the inference time for each module in the
proposed approach. Note that the perceptual difference dis-
persion map also requires running a CNN. As such, we also
added its inference time to the running complexity. The
estimated times are the average of running an image one
hundred (100) times in our framework. We use an NVIDIA
1080Ti GPU with 11GB GPU memory with an input resolu-
tion for each module as described in Sec. 4.1. Additionally,
we also evaluate the inference speed of our lighter frame-
work (explained in Sec. 5.2) as a comparison.

Module Ours Ours Light Resolution

Segmentation 1256 47 2048x1024
Synthesis 192 62 1024x512
Perceptual Difference 13 13 512x256
Dissimilarity 53 53 512x256

Total (ms) 1514 175 –

Table 5. Computational Complexity Study. Inference
time and input resolution for each module in the proposed
framework. Average results for one hundred (100) experi-
ments using NVIDIA 1080Ti GPU.

Method FS L&F FS Static
↑AP ↓FPR95 ↑AP ↓FPR95

Ours w grid search 55.1 39.6 61.5 25.6
Ours w end-to-end 59.6 58.6 61.1 37.3

Table 6. Ensemble Prediction Comparisons. Grouping
the predictions through end-to-end training shows compara-
ble results in AP against empirically selected weights (grid
search). However, end-to-end training increases signifi-
cantly the FPR95 as the network gets overconfident with
its predictions.

A.4. Ensemble with End-to-End Training

As stated in Sec. 3.3, there are benefits to be gained by
combining the calculated uncertainty maps (i.e softmax en-
tropy, softmax distance and perceptual difference) with the
output of the dissimilarity network. In our main work, we
combine these predictions using a weighted average, where
the weights are selected empirically through a grid search.
An alternative approach would be to learn these weights
during the training of the dissimilarity network. This type of
training would entail adding a learnable parameter (scalar)
for each prediction map at the end of the dissimilarity net-
work. Then, the model can optimize the weights to produce
an end-to-end ensemble prediction.

Table 6 compares the results between empirical and lern-
able weights using the validation set for FS Lost & Found
and FS Static. We first find a discrepancy in AP perfor-
mance. The end-to-end ensemble performs better in FS
L&F while empirical weights perform slightly better in FS
Static. As stated in Sec. 5.1, we explain that the ensemble
prediction with empirical weights outperforms in FS Static
since it is easier for uncertainty methods to detect artificially
blended objects. This behavior is less evident in the end-to-
end training since the network optimizes the weights before
generating a final prediction. In general, we expected end-
to-end ensemble to outperform emperical weights in AP as
the network optimizes its weights more efficiently.

The biggest insight from this comparison is shown when
comparing the FPR95. In this metric, The end-to-end train-
ing significantly decreases performance when compared to
empirical weights. These results are consistent with our ab-
lation study in Sec. 5.1, where we show that deep CNNs
(e.g. dissimilarity module) tend to be overconfident with its
prediction. Thus, by training in an end-to-end fashion, we
are still prone to generating overconfidence outputs. As we
intent to deploy our framework in safety critical environ-
ments (e.g. autonomous driving), we selected the empirical
weights as our best model.



A.5. Example Predictions

Figure 4 and Figure 5 display example predictions of our
approach in validation images from FS Lost & Found and
FS Static. Additionally, we show a qualitative comparison
between our technique, an uncertainty estimation method
(Softmax Entropy [14]), and an image re-synthesis method
(Image Re-synthesis [24]). These images emphasizes the
robustness of our framework for all anomalies scenarios
(Figure 1), in comparison with previous methods. Note that
the anomaly detection framework did not train with any of
the anomalous instances, and they are seen for the first time
during testing.

Additionally, some failure cases are presented in Fig-
ure 6. Common errors are derived scenes that differ urban
landscape, anomaly instances that blend well with the back-
ground or small anomalous objects that only cover few pix-
els in the image.



Figure 4. Framework example predictions. Qualitative comparison between proposed framework and baseline for un-
certainty methods [14] and image-resynthesis methods [24]. The proposed framework outperforms both previous methods
detecting anomalies instances. The first five images are from the FS Lost & Found, while the next five are from FS Static.
Pixels labeled as void are excluded from the prediction visualizations for the three methods shown, as they are also excluded
in the anomaly benchmarks.



Figure 5. Additional predictions examples. Our framework reliable detects all three outcomes when a segmentation network
encounters an anomalous instances, as explained in Figure 1. First four images are from FS Lost & Found, while the next
four are from FS Static. Softmax Entropy [14] and Image Resynthesis [24] are also shown as reference. Pixels labeled as
void are excluded from the prediction visualizations for the three methods shown, as they are also excluded in the anomaly
benchmarks.



Figure 6. Failure cases. Our framework still fails at detecting some challenging anomaly instances. Common errors are
derived scenes that differ urban landscape (top two images), anomaly instances that blend well with the background (middle
two images) or small anomalous objects that only cover few pixels in the image. Softmax Entropy [14] and Image Resynthesis
[24] are also shown as reference.


