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1. Datasets and Settings

In this section, we provide details of the datasets and set-
tings used. We use the same super network for training and
evaluation in each task.

In practice, different hyperparameters are often tuned
with a validation set for different tasks according to differ-
ent datasets and losses. For example, HRNet [14] is trained
using two different settings for segmentation and keypoint
estimation tasks. In this work, we follow the common train-
ing settings of each task, i.e., the setting in HRNet [14] for
segmentation and keypoint estimation, AtomNAS [9] for
classification, and PointPillar [7] for 3D detection.

As for the choice of λ for each task, we first empirically
tuned it so that HR-NAS-A’s FLOPs is comparable to the
least FLOPs among the baseline models, then we relaxed
the restriction so that HR-NAS-B reaches SOTA yet still
costs less FLOPs than the best baseline models. Currently,
the searched model size cannot be controlled precisely by
λ. We will strengthen it by incorporating other techniques
as our future work. See below for details.
ImageNet for Image Classification. The ILSVRC 2012
classification dataset [4] consists of 1,000 classes, with a
number of 1.2 million training images and 50,000 validation
images. Follow the common practice in [12, 16, 9, 13, 11],
we adopt a RMSProp optimizer with momentum 0.9 and
weight decay 1e-5; exponential moving average (EMA)
with decay 0.9999; and exponential learning rate decay.
The input size is 224×224. The initial learning rate is set to
0.064 with batch size 1024 on 16 Tesla V100 GPUs for 350
epochs, and decays by 0.97 every 2.4 epochs. By setting the
coefficient of the L1 penalty term λ to 1.8e-4 and 1.2e-4,
we obtain our HR-NAS-A and HR-NAS-B. Unless speci-
fied, we adopt the ReLU activation and the basic data aug-
mentation scheme, i.e., random resizing and cropping, and
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random horizontal flipping, and use single-crop for evalua-
tion. For experiments of HR-NAS†‡, we also adopt the SE
module [6], Swish activation [10], and RandAugment [3]
for better performance. We report the top-1 Accuracy as the
evaluation metric.
Cityscapes for Semantic Segmentation. The Cityscapes
dataset [2] contains high-quality pixel-level annotations of
5000 images with size 1024x2048 (2975, 500, and 1525
for the training, validation, and test sets respectively) and
about 20000 coarsely annotated training images. Following
the evaluation protocol [2], 19 semantic labels are used for
evaluation without considering the void label. In this work,
the input size is set to 512× 1024. We use an AdamW opti-
mizer with momentum 0.9 and weight decay 1e-5; exponen-
tial moving average (EMA) with decay 0.9999. The initial
learning rate is set to 0.04 with batch size 32 on 8 Tesla
V100 GPUs for 430 epochs. The learning rate and momen-
tum follow the onecycle scheduler with a minimum learning
rate of 0.0016. By setting the coefficient of the L1 penalty
term λ to 1.6e-4 and 6.0e-5, we obtain our HR-NAS-A and
HR-NAS-B. We use a basic data augmentation, i.e., random
resizing and cropping, random horizontal flipping, and pho-
tometric distortion for training and single-crop testing with
a test size of 1024 × 2048. We report the mean Intersec-
tion over Union (mIoU), mean (macro-averaged) Accuracy
(mAcc), and overall (micro-averaged) Accuracy (aAcc) as
the evaluation metrics.
ADE20K for Semantic Segmentation. The ADE20K
dataset [17] contains 150 classes and diverse scenes with
1,038 image-level labels. The dataset is divided into
20K/2K/3K images for training, validation, and testing re-
spectively. In this work, the input size and testing size is
set to 512 × 512 and 512 × 2048, respectively. The model
is trained with a batch size of 64 on 8 Tesla V100 GPUs
for 200 epochs. We use the same optimizer, learning rate
scheduler, data augmentation, and penalty weight λ as in the



Cityscapes dataset. We report the mean Intersection over
Union (mIoU) as the evaluation metric.
COCO Keypoint for Human Pose Estimation. The
COCO dataset [8] contains over 200, 000 images and
250, 000 person instances labeled with 17 keypoints. We
train our model on the COCO train2017 set, including
57K images and 150K person instances. We evaluate our
approach on the val2017, containing 5000 images. In this
work, we train the model using input sizes of 256×192 and
384 × 288 with batch size 384 and 192 on 8 Tesla V100
GPUs for 210 epochs, respectively. Following HRNet [14],
the initial learning rate is set to 1e-3 with a multistep sched-
uler (decayed by a factor of 0.1 in 170 and 200 epochs). We
use an Adam optimizer with momentum 0.9 and weight de-
cay 1e-8; exponential moving average (EMA) with decay
0.9999. By setting the coefficient of the L1 penalty term λ
to 1e-6 and 1e-8, we obtain our HR-NAS-A and HR-NAS-
B. We use random scaling and rotation as only data augmen-
tation for training and single-crop testing. We report aver-
age precision (AP), recall scores (AR), APM for medium
objects, and APL for large objects as evaluation metrics.
KITTI for 3D Object Detection. The KITTI 3D ob-
ject detection dataset [5] is widely used for monocular and
LiDAR-based 3D detection. It consists of 7,481 training
images and 7,518 test images as well as the correspond-
ing point clouds and the calibration parameters, comprising
a total of 80,256 2D-3D labeled objects with three object
classes: Car, Pedestrian, and Cyclist. Each 3D ground truth
box is assigned to one out of three difficulty classes (easy,
moderate, hard) according to the occlusion and truncation
levels of objects. In this work, we follow the train-val split
[1], which contains 3,712 training and 3,769 validation im-
ages. The overall framework is based on Pointpillars [7].
The input point points are projected into bird’s-eye view
(BEV) feature maps by a voxel feature encoder (VFE). The
projected BEV feature maps (496 × 432) are then used as
input of our 2D network for 3D/BEV detection. Follow-
ing [7], we set, pillar resolution: 0.16m, max number of
pillars: 12000, and max number of points per pillar: 100.
We use the onecycle scheduler with an initial learning rate
of 2e-3, a minimum learning rate of 2e-4, and batch size 16
on 8 Tesla V100 GPUs for 80 epochs. We use an AdamW
optimizer with momentum 0.9 and weight decay 1e-2. We
apply the same data augmentation, i.e., random mirroring
and flipping, global rotation and scaling, and global trans-
lation for 3D point clouds as in Pointpillar [7]. At infer-
ence time, we apply axis-aligned nonmaximum suppression
(NMS) with an overlap threshold of 0.5 IoU. We report stan-
dard average precision (AP) as the evaluation metric.

2. Network Architecture
As shown in Fig. 1, we visualize our entire super net-

work used in all experiments. It begins with two 3× 3 con-

Table 1. Comparisons of different projection size s of Transformer
on the CityScapes validation set. The query number n is set to 8.

Input size Params FLOPs mIoU(%) mACC(%) aACC(%)

Baseline 1.120M 1.863G 71.99 80.33 95.40
2× 2 1.180M 1.863G 72.27 80.74 95.40
4× 4 1.246M 1.864G 73.32 81.76 95.45
8× 8 2.273M 1.872G 74.22 82.36 95.52
16× 16 18.543M 1.969G 74.18 82.07 95.50

Table 2. Ablation study of our lightweight Transformer with n = 8
and s = 8 on the CityScapes validation set. Notations: ‘Enc’ –
only the encoder of Transformer is used, ‘Enc + Dec’ – both the
encoder and decoder are used in Transformer, ‘channel’ – use each
channel as a token, ‘spatial’ – use each spatial position as a token.

Input size Params FLOPs mIoU(%) mACC(%) aACC(%)

Baseline 1.120M 1.863G 71.99 80.33 95.40
SE [6] 2.101M 1.864G 72.81 81.33 95.35
Non-local [15] 1.317M 2.951G 72.50 81.32 95.34
Enc (spatial) 1.184M 1.866G 72.61 80.97 95.26
Enc (channel) 1.723M 1.869G 73.66 82.10 95.50
Enc + Dec (spatial) 1.204M 1.867G 73.54 81.87 95.44
Enc + Dec (channel) 2.273M 1.872G 74.22 82.36 95.52

volutions with stride 2 and number of channels 24, which
are followed by five parallel modules (respectively with 1,
2, 3, 4, 4 branches); a fusion module is inserted between
every two adjacent parallel modules, to obtain multi-scale
features. The numbers of channels for the four branches in
parallel modules are 18, 36, 72, 144, respectively.

3. Ablative Results for Transformer
In this section, we conduct two ablative experiments

to study the impact of the projection size s, the encoder-
decoder structure, and the attention mechanism on the per-
formance of our lightweight Transformer. For both exper-
iments, we take the searched network on Multi-branch +
MixConv space (without Transformer) in Tab.6 of the main
paper as a strong baseline.
Projection Sizes. We evaluate our Transformers with dif-
ferent projected spatial sizes s. From Tab. 1 we can see
that when s goes from 0 to 8, the mIoU keeps increasing
at the expense of small extra cost (i.e., FLOPs). Further
increasing s brings no gain in performance but drastically
increasing FLOPs. We therefore choose s = 8 throughout
the experiments.
Attention Structures and Mechanisms. We also con-
duct ablative experiments to validate the effectiveness of
our Transformer. We discuss (1) encoder-decoder structures
and (2) two kinds of attention mechanisms by transposing
the feature, i.e., ‘channel’ – use each channel of the flattened
feature map as a token, ‘spatial’ – use each spatial position
as a token. As shown in Tab. 2, our Transformer obtains
the best performance when both encoder and decoder are
used on channel-wise tokens. Our Transformer also signifi-
cantly outperforms its counterparts such as SE [6] and Non-
local [15] on dense prediction tasks. Since the channel-wise
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Figure 1. Visualization of our super network architecture. min and mout denote the input and output numbers of branches in the fusion
module. nc and nw denote the number of searching blocks and the number of channels in the parallel module, respectively. The arrows
represent the searching blocks and the cubes represent the feature maps. The number under the cube represents the number of channels.

lightweight transformer shows better performance, we set it
as the default in this work.

4. Visualization of Visual Recognition Results

We visualize the results of HR-NAS-A on segmentation,
human pose estimation, and 3D detection (Fig. 2, 3, 4).

Figure 2. Visualization of semantic segmentation results (left:
original images; right: segmentation maps) on Cityscapes.

Figure 3. Visualization of human pose estimation on COCO.

Figure 4. Visualization of 3D object detection results on KITTI.
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