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Abstract

Modern deep convolutional networks (CNNs) are often
criticized for not generalizing under distributional shifts.
However, several recent breakthroughs in transfer learning
suggest that these networks can cope with severe distribution
shifts and successfully adapt to new tasks from a few training
examples. In this work we study the interplay between out-
of-distribution and transfer performance of modern image
classification CNNs for the first time and investigate the
impact of the pre-training data size, the model scale, and the
data preprocessing pipeline. We find that increasing both
the training set and model sizes significantly improve the
distributional shift robustness. Furthermore, we show that,
perhaps surprisingly, simple changes in the preprocessing
such as modifying the image resolution can significantly
mitigate robustness issues in some cases. Finally, we outline
the shortcomings of existing robustness evaluation datasets
and introduce a synthetic dataset SI-SCORE we use for a
systematic analysis across factors of variation common in
visual data such as object size and position.

1. Introduction
Deep convolutional networks have attained impressive

results across a plethora of visual classification benchmarks
[36, 60] where the training and testing distributions match.
In the real world, however, the conditions in which the mod-
els are deployed can often differ significantly from the con-
ditions in which the model was trained. It is thus imperative
to understand the impact dataset shifts [50] have on the per-
formance of these models. This problem has gained a lot
of traction and several systematic investigations have shown
unexpectedly high sensitivity of image classifiers to various
dimensions, including photometric perturbations [27], natu-
ral perturbations obtained from video data [54], as well as
model-specific adversarial perturbations [23].

The problem of dataset shift, or out-of-distribution (OOD)
generalization, is closely related to a learning paradigm
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Figure 1: We explore the fundamental interplay between in-distribution
performance, out-of-distribution (OOD) performance, and transfer learning
performance (red arrows in the graph on the right), with respect to the major
design choices listed on the left. The relationship between in-distribution
and OOD performance is highly under-explored along these axes, whereas
that between OOD and transfer performance has not been studied before to
the best of our knowledge.

known as transfer learning [56, §13]. In transfer learning
we are interested in constructing models that can improve
their performance on some target task by leveraging data
from different related problems. In contrast, under dataset
shift one assumes that there are two environments, namely
training and testing [56], with the constraint that the model
cannot be adapted using data from the target environment.
As a consequence, the two environments typically have to
be more similar and their differences more structured than
in the transfer setting (c.f. Section 2).

In the context of transfer learning, detailed scaling laws
characterizing the interplay between the in-distribution and
transfer performance as a function of pre-training data set
size, model size, architectural choices such as normaliza-
tion, and transfer strategy have been established recently
[37, 72, 36]. Model and dataset scale were identified as
key factors for transfer performance. The similarities be-
tween transfer learning and OOD generalization suggests
that these axes are also relevant for OOD generalization and
raises the question of what the corresponding scaling laws
are. While some axes have been partially explored by prior
work [27, 70], the big picture is largely unknown. Even more
importantly, is in-distribution performance enough to charac-
terize OOD performance, or can transfer performance give
a more fine-grained characterization of OOD performance



of a population of models than in-distribution performance?
To the best of our knowledge, this question has not been
systematically explored before in the literature.

Contributions We systematically investigate the interplay
between the in-distribution accuracy of image classification
models on the training distribution, their generalization to
OOD data (without adaptation), and their transfer learning
performance with adaptation in the low-data regime (see
Fig. 1 for an illustration). Specifically:

(i) We present the first meta-analysis of existing OOD met-
rics and transfer learning benchmarks across a wide
variety of models, ranging from self-supervised to fully
supervised models with up to 900M parameters. We
show that increasing the model and data scale dispro-
portionately improves transfer and OOD performance,
while only marginally improving the performance on
the IMAGENET validation set.

(ii) Focusing on OOD robustness, we analyze the effects
of the training set size, model scale, and the training
regime and testing resolution, and find that the effect of
scale overshadows all other dimensions.

(iii) We introduce a novel dataset for fine-grained OOD
analysis to quantify the robustness to object size, object
location, and object orientation (rotation angle). We be-
lieve that this is a first systematic study to show that the
models become less sensitive (and hence more robust)
to each of these factors of variation as the dataset size
and model size increase.

2. Background

Robustness of image classification models Understand-
ing and correcting for dataset shifts are classical problems
in statistics and machine learning, and have as such re-
ceived substantial attention, see e.g. the monograph [50].
Formally, let us denote the observed variable by X and
the variable we want to predict by Y . A dataset shift
occurs when we train on samples from Ptrain(X,Y ), but
are at test time evaluated under a different distribution
Ptest(X,Y ). Storkey [56] discusses and precisely defines
different possibilities for how Ptrain and Ptest can differ. We
are mostly interested in covariate shifts, i.e., when the condi-
tionals Ptrain(Y |X) = Ptest(Y |X) agree, but the marginals
Ptrain(X) and Ptest(X) differ. Most robustness datasets
proposed in the literature targeting IMAGENET models are
such instances—the images X come from a source Ptest(X)
different from the original collection process Ptrain(X), but
the label semantics do not change. As a robustness score one
typically uses the expected accuracy, i.e., Ptest(Y = f(X)),
where f(X) is the class predicted by the model.

Dataset shift types IMAGENET-V2 is a recollected ver-
sion of the IMAGENET validation set [52]. The authors
attempted to replicate the data collection process, but found

that all models drop significantly in accuracy. Recent work
attributes this drop to statistical bias in the data collection
[17]. IMAGENET-C and IMAGENET-P [27] are obtained
by corrupting the IMAGENET validation set with classical
corruptions, such as blur, different types of noise and com-
pression, and further cropping the images to 224 × 224.
These datasets define a total of 15 noise, blur, weather, and
digital corruption types, each appearing at 5 severity levels
or intensities. OBJECTNET [3] presents a new test set of im-
ages collected directly using crowd-sourcing. OBJECTNET
is particular as the objects are captured at unusual poses in
cluttered, natural scenes, which can severely degrade recog-
nition performance. Given this clutter, and arguably better
suitability as a detection than recognition task [5], Y |X
might be hard to define and the dataset goes beyond a covari-
ate shift. In contrast, the IMAGENET-A dataset [30] consists
of real-world, unmodified, and naturally occurring examples
that are misclassified by ResNet models. Hence in addition
to the covariate shift due to the data source, this dataset is
not model-agnostic and exhibits a strong selection bias [56].

Attempting to focus on naturally occurring invari-
ances, [54] annotated two video datasets: IMAGENET-VID-
ROBUST and YOUTUBE-BB-ROBUST, derived from the
IMAGENET-VID [11] and YOUTUBE-BB [51] datasets re-
spectively. In [54] the authors propose the pm-k metric—
given an anchor frame and up to k neighboring frames, a
prediction is marked as correct only if the classifier correctly
classifies all 2k + 1 frames around and including the anchor.
We present the details of each dataset in Appendix A.
Transferability of image classification models In trans-
fer learning [48], a model might leverage the data it has seen
on a related distribution, Ppre−train, to perform better on a
new task Ptrain. Note that in contrast to the covariate shift
setting, the disparity between Ppre−train and the new task is
typically larger, but one is further given samples from Ptrain.
While there exist many approaches on how to transfer to
the new task, the most common approach in modern deep
learning, which we use, is to (i) train a model on Ppre−train

(using perhaps an auxiliary, self-supervised task [15, 22]),
and then (ii) train a model on Ptrain by initializing the model
weights from the model trained in the first step.

Recently, a suite of datasets has been collected to bench-
mark modern image classification transfer techniques [72].
The Visual Task Adaptation Benchmark (VTAB) defines 19
datasets with 1000 labeled samples each, categorized into
three groups: natural (most similar to IMAGENET) consists
of standard natural classification tasks (e.g., CIFAR); special-
ized contains medical and satellite images; and structured
(least similar to IMAGENET) consists mostly of synthetic
tasks that require understanding of the geometric layout of
scenes. We compute an overall transfer score as the mean
across all 19 datasets, as well as scores for each subgroup of
tasks. We provide details for all of the tasks in Appendix A.
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Figure 2: The relationship between transfer learning, IMAGENET, and robustness performance. (Left) Average score on all transfer benchmarks versus
IMAGENET performance. (Center) Average score on all robustness benchmarks versus average transfer performance. (Right) Correlation between different
groups of transfer datasets (natural, specialized, structured), and robustness metrics.

3. A meta-analysis of robustness and transfer-
ability metrics

While many robustness metrics have been proposed to
capture different sources of brittleness, it is not well under-
stood how these metrics relate to each other. We investigate
the practical question of how useful the various metrics are in
guiding design choices. Further, we empirically analyze the
relationship between robustness and transferability metrics,
which is lacking in the literature, despite their close relation-
ship. To analyze these questions, we evaluated 39 different
models over 23 robustness metrics and the 19 transfer tasks.
Metrics For robustness, we measure the model accuracy
on the IMAGENET, IMAGENET-V2 (the matched frequency
variant) and OBJECTNET datasets. We also consider video
datasets, IMAGENET-VID and YOUTUBE-BB; we use both
the accuracy metric and the pm-10 metric (suffix -W). On
IMAGENET-C we report the AlexNet-accuracy-weighted
[39] accuracy over all corruption times (called mean cor-
ruption error in [27]). To evaluate the transferability of the
models, we use the VTAB-1K benchmark introduced in Sec-
tion 2. We evaluate average transfer performance across all
19 datasets, with 1000 examples each, as well as per-group
performance. To transfer a model we performed a sweep
over two learning rates and schedules. We report the median
testing accuracy over three fine-tuning runs with parameters
selected using a 800-200 example train-validation split.
Models To perform this meta-analysis we consider several
model families.We evaluate ResNet-50 [24] and six Effi-
cientNet (B0 through B5) models [60] including variants
using AutoAugment [10] and AdvProp [69], which have
been trained on IMAGENET. We include self-supervised
SimCLR [6] (variants: linear classifier on fixed representa-
tion (lin), fine-tuned on 10% (ft-10), and 100% (ft-100) of
the IMAGENET data), and self-supervised-semi-supervised
(S4L) [71] models that have been fine-tuned to 10% and
100% of the IMAGENET data. We also consider a set of mod-
els that use other data sources. Specifically, three NoisyS-
tudent [70] variants which use IMAGENET and unlabelled
data from the JFT dataset, BiT (BigTransfer) [36] models
that have been first trained on IMAGENET, IMAGENET-21K,

or JFT and then transferred to IMAGENET by fine-tuning,
and the Video-Induced Visual Invariance (VIVI) model [66],
which uses IMAGENET and unlabelled videos from the
YT8M dataset [1]. Finally, we consider the BigBiGAN [14]
model which has been first trained as a class-conditional gen-
erative model and then fine-tuned as an IMAGENET classifier.
All details can be found in Appendix E.

How informative are robustness metrics for discriminat-
ing between models? The goal of a metric is to discrimi-
nate between different models and thus guide design choices.
We therefore quantify the usefulness of each metric in terms
of how much it improves the discriminability between the
various models beyond the information provided by IMA-
GENET accuracy. Specifically, we train logistic regression
classifiers to discriminate between the 12 model groups out-
lined above. We compared the performance of a classifier
using only IMAGENET accuracy as input feature, to a clas-
sifier using IMAGENET and up to two of the other metrics,
see Fig. 4 and Appendix A. We found that most of the tested
metrics provide little increase in model discriminability over
IMAGENET accuracy. We further, similarly to [61], found
that all metrics are highly rank-correlated with each other,
which we present in Appendix A. Of course, these results
are conditioned on the size and composition of our dataset,
and may differ for a different set of models. However, based
on our collection of 39 models in 12 groups, the most infor-
mative metrics are those based on different datasets and/or
video, rather than IMAGENET-derived datasets.

How related are OOD robustness and transfer metrics?
Next, we turn to transfer learning. It has been observed that
better IMAGENET models transfer better [37, 72]. Since
robustness metrics correlated strongly with IMAGENET
accuracy, we might expect a similar relationship. To get
an overall view, we compute the mean of all robustness
metrics, and compare it to transfer performance. Figure 2
(center) shows this average robustness plotted against
transfer performance, while Figure 2 (left) shows transfer
versus IMAGENET accuracy. Indeed, we observe a large
correlation coefficient ρ = 0.73 between robustness and
transfer metrics; however, the correlation is not stronger than
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Figure 3: (Top) Reduction (in %) in classification error relative to the classification error of the model trained for 112k steps on 1M examples (bottom left
corner) as a function of training iterations and training set size. The results are for a ResNet-101x3 trained on IMAGENET-21K subsets. (Bottom) Relative
reduction (in %) in classification error going from a ResNet-50 to a ResNet-101x3 as a function of training steps and training set size (IMAGENET-21K
subsets). The reduction generally increases with the training set size and longer training. Hence, the right scaling laws not only lead to in-distribution
improvements, but also to simultaneous improvements across a heterogeneous set of OOD benchmarks. We investigate why these larger models achieve
stronger performance across all benchmarks in Section 5.

between transfer and IMAGENET. Further, we compute the
correlation of the residual robustness score (mean robustness
minus IMAGENET accuracy) against transfer score, and find
only a weak relationship of ρ = 0.12. This indicates that
robustness metrics, on aggregate, do not provide additional
signal that predicts model transferability beyond that of
the base IMAGENET performance. We do, however, see
some interesting differences in the relative performances
of different model groups. Certain model groups, while
attaining reasonable IMAGENET/robustness scores, transfer
less well to VTAB. Therefore, there are factors unrelated
to robust inference that do influence transferability. One
example is batch normalization which is outperformed
by group normalization with weight standardization in
transfer [36]. Next, we break down the correlation by
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Figure 4: Informativeness of robustness metrics. Values indicate the dif-
ference in accuracy of a logistic classifier trained to discriminate between
model types based on IMAGENET accuracy plus one additional metric,
compared to a classifier trained only on IMAGENET accuracy (higher is
better, top 10 metrics shown). Bars show mean±s.d. of 1000 bootstrap
samples from the 39 models.

robustness metrics and transfer datasets in Fig. 2 (right). We
see that each metric correlates similarly with the task groups.
However, for the groups that require more distant transfer
(Specialized, Structured), no metric predicts transferability
well. Perhaps surprisingly, raw IMAGENET accuracy is the
best predictor of transfer to structured tasks, indicating that
robustness metrics do not relate to challenging transfer tasks,
at least not more than raw IMAGENET accuracy.

Summary Metrics based on ImageNet have very little ad-
ditional discriminative power over ImageNet accuracy, while
those not based on ImageNet have more, but their additional
discriminative power is still low—popular robustness met-
rics provide marginal complementary information. Trans-
ferability is also related to IMAGENET accuracy, and hence
robustness. We observe that while there is correlation, trans-
fer highlights failures that are somewhat independent of
robustness. Further, no particular robustness metric appears
to correlate better with any particular group of transfer tasks
than IMAGENET does. Inspired by these results, we next
investigate strategies known to be effective for IMAGENET
and transfer learning on the OOD robustness benchmarks.

4. Scaling laws for OOD performance

Increasing the scale of pre-training data, model archi-
tecture, and training steps have recently led to diminishing
improvements in terms of IMAGENET accuracy. By contrast,
it has been recently established that scaling along these axes
can lead to substantial improvements in transfer learning per-
formance [36, 60]. In the context of robustness, this type of
scaling has been explored less. While there are some results
hinting that scale can improve robustness [27, 52, 70, 64], no



principled study decoupling the different scale axes has been
performed. Given the strong correlation between transfer
performance and robustness, this motivates the systematic in-
vestigation of the effects of the pre-training data size, model
architecture size, training steps, and input resolution. While
paramount to the out-of-distribution performance, as we find,
these pretraining design choices have not yet received a great
deal of attention from the community.

Setup We consider the standard IMAGENET training
setup [24] as a baseline, and scale up the training accord-
ingly. To study the impact of dataset size, we consider the
IMAGENET-21K [11] and JFT [57] datasets for the exper-
iments, as pre-training on either of them has shown great
performance in transfer learning [36]. We scale from the IM-
AGENET training set size (1.28M images) to the IMAGENET-
21K training set size (13M images, about 10 times larger
than IMAGENET). To explore the effect of the model size,
we use a ResNet-50 as well as the deeper and 3×wider
ResNet-101x3 model. We further investigate the impact of
the training schedule as larger datasets are known to benefit
from longer training for transfer learning [36]. To disen-
tangle the impact of dataset size and training schedules, we
train the models for every pair of dataset size and schedule.

We fine-tune the trained models to IMAGENET using the
BiT HyperRule [36], and assess their OOD generalization
performance in the next section. Throughout, we report the
reduction in classification error relative to the model which
was trained on the smallest number of examples and for
the fewest iterations, and which hence achieves the lowest
accuracy. Other details are presented in Appendix B.

Pre-training dataset size impact The results for the
ResNet-101x3 model are presented in Fig. 3. When pre-
trained on IMAGENET-21K, the OOD classification error
significantly decreases with increasing pre-training dataset
size and duration: We observe relative error reductions of
20-30% when going from 112k steps on 1M data points to
1.12M steps on 13M data points. The reductions are least
pronounced for YOUTUBE-BB(-W). Note that training for
1.12M steps leads to a lower accuracy than training for only
457k steps unless the full IMAGENET-21K dataset is used.
For models trained on JFT we observe a similar behavior
except that training for 1.12M steps often leads to a higher
accuracy than training for 457k steps even when only 1M or
5M data points are used (c.f. Appendix B). These results sug-
gest that, if the models have enough capacity, increasing the
amount of pre-training data, without any additional changes,
leads to substantial gains in all datasets simultaneously which
is in line with recent results in transfer learning [36].

Model size impact Figure 3 shows the relative reduction
in classification error when using a ResNet-101x3 instead
of a ResNet-50 as a function of the number of training steps
and the dataset size. It can be seen that increasing the model
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Figure 5: Comparison of different types of evaluation preprocessing
and resolutions. (Default, blue): Accuracy obtained for the prepro-
cessing and resolution proposed by the authors of the respective mod-
els. (Best, orange): The accuracy when selecting the best resolution
from {64, 128, 224, 288, 320, 384, 512, 768}. (FixRes, green): Apply-
ing FixRes for the same set of resolutions and selecting the best resolution.
Increasing the evaluation resolution and additionally using FixRes helps
across a large range of models and pretraining datasets on IMAGENET-A
and OBJECTNET.

size can lead to substantial reductions of 5–20%. For a fixed
training duration, using more data always helps. However,
on IMAGENET-21K, training too long can lead to increases
in the classification error when the model size is increased,
unless the full IMAGENET-21K is used. This is likely due to
overfitting. This effect is much less pronounced when JFT is
used for training. JFT results are presented in Appendix B.
Again, reductions in classification error are least pronounced
for YOUTUBE-BB/YOUTUBE-BB-W.

Testing resolution and OOD robustness During training,
images are typically cropped randomly, with many crop sizes
and aspect ratios, to prevent overfitting. In contrast, during
testing, the images are usually rescaled such that the shorter
side has a pre-specified length, and a fixed-size center crop is
taken and then fed to the classifier. This leads to a mismatch
in object sizes between training and testing. Increasing the
resolution at which images are tested leads to an improve-
ment in accuracy across different architectures [63, 64]. Fur-
thermore, additional benefits can be obtained by applying
FixRes — fine-tuning the network on the training set with
the test-time preprocessing (i.e. omitting random cropping
with aspect ratio changes), and at a higher resolution. We
explore the effect of this discrepancy on the robustness of
different architectures. As some of the robustness datasets
were collected differently from IMAGENET, discrepancies
in the cropping are likely. We investigate both adjusting test-
time resolution and applying FixRes. For FixRes, we use a
simple setup with a single schedule and learning rate for all
models (except using a 10× smaller learning rate for the BiT
models), and without heavy color augmentation as in [63]



or label smoothing as in [64]. We did not extensively tune
hyperparameters, but chose a setup that works reasonably
well across architectures and training datasets. Note that
changing the resolution can be seen as scaling the computa-
tional resources available to the model, as both training and
inference costs grow with the resolution.

Following the protocol of the FixRes paper
[63], we evaluate each model for all resolutions in
{64, 128, 224, 288, 320, 384, 512, 768} to illustrate the
potential of adapting the testing resolution (in practice we
do not have access to an OOD validation set so we cannot
select the optimal solution in advance). For conciseness,
we show the accuracy for IMAGENET-A and OBJECTNET
at the testing resolution proposed by the authors of the
respective architecture along with the highest accuracy
across testing resolutions (Figure 5). The results for other
datasets and resolutions are deferred to Appendix C.

We start by discussing observations that apply to most
models, excluding the BiT models which will be discussed
below. While FixRes only leads to marginal benefits on
IMAGENET, it can lead to substantial improvements on the
robustness metrics. Choosing the optimal testing resolution
leads to a significant increase in accuracy on IMAGENET-
A and OBJECTNET in most cases, and applying FixRes
often leads to additional substantial gains. For OBJECTNET,
fine-tuning with testing preprocessing (i.e. fine-tuning with
central cropping instead of random cropping as used during
training) can help even without increasing resolution.

Increasing the resolution and/or applying FixRes often
slightly helps on IMAGENET-V2. For IMAGENET-C, the
optimal testing resolution often corresponds to the resolu-
tion used for training, and applying FixRes rarely changes
this picture. This is not surprising as the IMAGENET-C im-
ages are cropped to 224 pixels by default, and increasing the
resolution does not add any new information to the image.
For the video-derived robustness datasets IMAGENET-VID-
ROBUST and YOUTUBE-BB-ROBUST, evaluating at a larger
testing resolution and/or applying FixRes at a higher reso-
lution can substantially improve the accuracy on the anchor
frame and the robustness accuracy for small EfficientNet and
ResNet models, but does not help the larger ones. For the BiT
models, the resolution suggested by the authors is almost
always optimal, except on OBJECTNET and IMAGENET-
A, where changing the preprocessing considerably helps.
FixRes arguably does not lead to improvements as it was
already applied in BiT as a part of the BiT HyperRule.

Summary These empirical results point to the following
conclusion: for models with enough capacity, increasing
the amount of pre-training data, with no additional changes,
leads to substantial gains in all considered OOD generaliza-
tion tasks simultaneously. Secondly, resolution adjustments
as outlined above can address the considerable distribution
shift caused by resolution mismatch.

F.O.V. DATASET CONFIGURATION IMAGES

SIZE Objects upright in the center, sizes from 1% to
100% of the image area in 1% increments.

92 884

LOCATION Objects upright. Sizes are 20% of the image
area. We do a grid search of locations, dividing
the x-coordinate and y-coordinate dimensions
into 20 equal parts each, for a total of 441 coor-
dinate locations.

479 184

ROTATION Objects in the center, sizes equal to 20%, 50%,
80% or 100% of the image size. Rotation an-
gles ranging from 1 to 341 degrees counter-
clockwise in 20-degree increments.

39 540

Table 1: Synthetic dataset details. The first column shows the relevant factor
of variation (F.O.V.). When there are multiple values for multiple factors of
variation, we generate the full cross product of images.

5. SI-SCORE: A fine-grained analysis of ro-
bustness to common factors of variation

The results in Section 4 do not reveal the underlying
reasons for the success of larger models trained on more
data on all robustness metrics. Intuitively, one would expect
that these models are more invariant to specific factors of
variation, such as object location, size, and rotation. How-
ever, a systematic assessment hinges on testing data which
can be varied according to these axes in a controlled way.
At the same time, the combinatorial nature of the problem
precludes any large-scale systematic data collection scheme.

In this work we present a scalable alternative and con-
struct a novel synthetic dataset for fine-grained evaluation:
SI-SCORE (Synthetic Interventions on Scenes for Robust-
ness Evaluation). In a nutshell, we paste a large collection of
objects onto uncluttered backgrounds (Figure 6, Figure 14a),
and can thus conduct controlled studies by systematically
varying the object class, size, location, and orientation.1

Synthetic dataset details The foregrounds were extracted
from OpenImages [40] using the provided segmentation
masks. We include only object classes that map to Ima-
geNet classes. We also removed all objects that are tagged
as occluded or truncated, and manually removed highly in-
complete or inaccurately labeled objects. The backgrounds
were images from nature taken from pexels.com (the li-
cense therein allows one to reuse photos with modifications).
We manually filtered the backgrounds to remove ones with
prominent objects, such as images focused on a single ani-
mal or person. In total, we converged to 614 object instances
across 62 classes, and a set of 867 backgrounds.

We constructed three subsets for evaluation, one corre-
sponding to each factor of variation we wanted to investigate,
as shown in Table 1. In particular, for each object instance,

1The synthetic dataset and code used to generate the dataset are open-
sourced on GitHub and are being hosted by the Common Visual Data
Foundation.

https://github.com/google-research/si-score
https://github.com/google-research/si-score
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Figure 6: (Left) Sample images from our synthetic dataset. We consider 614 foreground objects from 62 classes and 867 backgrounds and vary the object
location, rotation angle, and object size for a total of 611 608 images. (Right) In the first column, for each location on the grid, we compute the average
accuracy. Then, we normalize each location by the 95th percentile across all locations, which quantifies the gap between the locations where the model
performs well, and the ones where it under-performs (first column, dark blue versus white). Then, we consider models trained with more data, compute
the same normalized score, and plot the difference with respect to the first column. We observe that, as dataset size increases, sensitivity to object location
decreases – the outer regions improve in relative accuracy more than the inner ones (e.g. dark blue vs white on the second and third columns). The effect is
more pronounced for the larger model. The full set of results is presented in Figure 17 in Appendix D.

we sample two backgrounds, and for each of these object-
background combinations, we take a cross product over all
the factors of variation. For the datasets with multiple values
for more than one factor of variation, we take a cross product
of all the values for each factor of variation in the set (object
size, rotation, location). For example, for the rotation angle
dataset, there are four object sizes and 18 rotation angles, so
we do a cross product and have 72 factor of variation com-
binations. For the object size and rotation datasets, we only
consider images where objects are at least 95% in the image.
For the location dataset, such filtering removes almost all
images where objects are near the edges of the image, so we
do not do such filtering. Note that since we use the central
coordinates of objects as their location, at least 25% of each
object is in the image even if we do not do any filtering. The
results in the following sections are similar when filtering
out objects that are less than 50% or 75% in the image.

Learned invariances as a function of scale We study one
factor of variation at a time. For example, when studying
the impact of changing the location of the object center, we
measure the average performance for each location over a
uniform grid. Building on our investigation in the previous
section, we test whether increasing model size and dataset
size improves robustness to these three factors of variation
by evaluating the ResNet-50 and ResNet-101x3 models. We
observe that the models indeed become more invariant to
object location (Figure 6), rotation (Figure 7, left), and size
(Figure 7, right) as the pre-training set size increases. Specif-
ically, as we pre-train on more data, the average prediction
accuracy across various object locations, sizes, and rota-
tion angles becomes more uniform. Furthermore, the larger
ResNet-101x3 model is indeed more robust. Analogous
results on the JFT dataset are presented in Appendix D.

6. Related work
There has been a growing literature exploring the robust-

ness of image classification networks. Early investigations in
face and natural image recognition found that performance
degrades by introducing blur, Gaussian noise, occlusion, and
compression artifacts, but less by color distortions [12, 35].
Subsequent studies have investigated brittleness to similar
corruptions [53, 76], as well as to impulse noise [31], photo-
metric perturbations [62], and small shifts and other transfor-
mations [2, 17, 74]. CNNs have also been shown to over-rely
upon texture rather than shape to make predictions, in con-
trast to human behavior [20]. Robustness to adversarial
attacks [23] is a related, but distinct problem, where perfor-
mance under worst-case perturbations are studied. In this
paper we did not study such adversarial robustness, but have
focused on average-case robustness to natural perturbations.

2Several techniques have been shown to improve model
robustness on these datasets. Using better data augmen-
tation can improve performance on data with synthetic
noise [29, 43]. Auxiliary self-supervision [7, 71] can im-
prove robustness to label noise and common corruptions
[28]. Transductive fine-tuning using self-supervision on the
test data improves performance under distribution shift [58].
Training with adversarial perturbations improves many ro-
bustness benchmarks if one uses separate Batch-Norm pa-
rameters for clean and adversarial data [69]. Finally, addi-
tional pre-training using very large auxiliary datasets has re-
cently shown significant improvements in robustness. Noisy
Student [70] reports good performance on several robust-
ness datasets, while Big Transfer (BiT) [36] reports strong
performance on the OBJECTNET dataset [3].

Deep networks are often trained by pre-training the net-
work on a different problem and then fine-tuning on the
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Figure 7: (Left) In the first row of both plots we show the ratio of the accuracy and the best accuracy (across all rotations). For the second row (model trained
on 2.6M instances) and other rows, we compute the same normalized score and visualize the difference with the first row. Larger positive differences with the
first row imply a more uniform behavior across object rotations. We observe that, as the dataset size increases, the average prediction accuracy across various
rotation angles becomes more uniform. The effect is more pronounced for the larger model. (Right) Similarly, the average accuracy across various object
sizes becomes more uniform for both models. As expected, the improvement is most pronounced for small object sizes covering 10–20% of the pixels. The
full set of results is presented in Figures 15 and 16 in Appendix D.

target task. This pre-training is often referred to as rep-
resentation learning; representations can be trained using
supervised [32, 36], weakly-supervised [44], or unsuper-
vised data [13, 14, 66, 70]. Recent benchmarks have been
proposed to evaluate transfer to several datasets, to assess
generalization to tasks with different characteristics, or those
disjoint from the pre-training data [65, 72]. While state-of-
the-art performance on many competitive datasets is attained
via transfer learning [70, 36], the implications for final ro-
bustness metrics remain unclear.

Creating synthetic datasets by inserting objects onto back-
grounds has been used for training [75, 16, 21] and evaluat-
ing models [36], but previous works do not systematically
vary object size, location or orientation, or analyze transla-
tion and rotation robustness only at the image level [18].

Given the lack of a consensus on what “natural” pertur-
bations are, there are no established general laws on how
models behave under various data shifts. Concurrently, [61]
investigated whether higher accuracy on synthetic datasets
translates to superior performance on natural OOD datasets.
They also identify model size and training data set size as the
only technique providing a benefit. In [26] the authors list
several of the hypotheses that appear in the literature, and
collect new datasets that provide (both positive and negative)
evidence for their soundness.

7. Limitations and future work
We analyzed OOD generalization and transferability of

image classifiers, and demonstrated that model and data
scale together with a simple training recipe lead to large
improvements. However, these models do exhibit substantial
performance gaps when tested on OOD data, and further

research is required. Secondly, this approach hinges on the
availability of curated datasets and significant computing
capabilities which is not always practical. Hence, we believe
that transfer learning, i.e. train once, apply many times, is
the most promising paradigm for OOD robustness in the
short term. One limitation of this study is that we consider
image classification models fine-tuned to the IMAGENET
label space which were developed with the goal of optimiz-
ing the accuracy on the IMAGENET test set. While existing
work shows that we do not overfit to IMAGENET, it is pos-
sible that these models have correlated failure modes on
datasets which share the biases with IMAGENET [52]. This
highlights the need for datasets which enable fine-grained
analysis for all important factors of variation and we hope
that our dataset will be useful for researchers.

The introduced synthetic data can be used to investigate
other qualitative differences between models. For example,
when comparing ResNet-50s trained on ImageNet, a ResNet
using GroupNorm does better on smaller objects than one
with BatchNorm, whereas the model with BatchNorm does
better on larger objects (Figure 14b in the appendix). While
a thorough investigation is beyond the scope of this work, we
hope that SI-SCORE will be useful for such future studies.

Instead of requiring the model to work under various
dataset shifts, one can ask an alternative question: assum-
ing that the model will be deployed in an environment sig-
nificantly different from the training one, can we at least
quantify the model uncertainty for each prediction? This im-
portant property remains elusive for moderate-scale neural
networks [55], but could potentially be improved by large-
scale pretraining which we leave for future work.
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A. Analysis of existing robustness and transfer metrics
Here, we provide additional details related to the analyses and benchmarks presented in Section 3.

A.1. Robustness metric correlation
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Figure 8: Spearman’s rank correlation between accuracies on the eight robustness datasets. Samples were taken from 39 models across various model families
presented in Table 2.

A.2. Dimensionality of the space of robustness metrics

To estimate how many different dimensions are measured by the robustness metrics beyond what is already explained
by IMAGENET accuracy, we proceeded as follows. For each of the robustness metrics shown in Figure 8 and 10, a linear
regression was fit to predict that metric’s value for the 39 models, using IMAGENET accuracy as the sole predictor variable.
Then, the residuals were computed for each metric by subtracting the linear regression prediction. The plot shows the fraction
of variance explained for the first 4 principal components of the space of residuals of the robustness metrics. As a null
hypothesis, we assumed that there is no correlation structure in the metric residuals. To construct corresponding null datasets,
we randomly permuted the values for each metric independently, which destroys the correlation structure between metrics.
Figure 9a shows that only the first principal component is significantly above the value expected under the null hypothesis.

A.3. Informativeness of robustness metrics

To estimate how useful different combinations of robustness metrics are for discriminating between model types, we trained
logistic regression classifiers to discriminate between the 12 model groups outlined in the main paper. We consider IMAGENET
accuracy as a baseline metric and therefore compare the performance of a classifier using only IMAGENET accuracy as input
feature, to a classifier using IMAGENET either one (Figure 10, left) or two (Figure 10, right) additional metrics as input
features. Figure 10 shows difference in accuracy to the baseline (IMAGENET) classifier. These results can serve practitioners
with a limited budget as a rough guideline for which metric combinations are the most informative. In our experiments, the
most informative combination of metrics in addition to IMAGENET accuracy was OBJECTNET and YOUTUBE-BB, although
other combinations performed similarly within the statistical uncertainty.

A.4. Visual Task Adaptation Benchmark Details

The Visual Task Adaptation Benchmark (VTAB) [72] contains 19 tasks. Either the full dataset or 1000-example training
sets may be used. We use the version with 1000-example training sets (VTAB-1k).

The tasks are divided into three groups: natural consists of standard natural image classification problems; specialized con-
sists of domain-specific images captured with specialist equipment (e.g. medical images); structured consists of classification
tasks that require geometric understanding of a scene. The natural group contains the following datasets: Caltech101 [42],
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(a) The space of robustness metrics.

DATASET INSTANCES CLS.

IMAGENET [39] 50 000 1000
IMAGENET-A [30] 7500 200
IMAGENET-C [27] 15 × 4×50 000 1000
OBJECTNET [3] 18 574 113
IMAGENET-V2 [52] 10 000 1000
IMAGENET-VID [54] 22 179 293
YTBB-ROBUST [54] 51 826 229

(b) The name and reference, number of instances, and the number of classes
overlapping with ImageNet for each dataset.

Figure 9: (Left) The space of robustness metrics spans approximately one statistically significant dimension after accounting for IMAGENET accuracy.
Errorbars show 95% confidence intervals based on 1000 bootstrap samples (for the true data) or 1000 random permutations (for the null distribution). See
Section A.2 for details. (Right) Details for the datasets used in this study. The datasets were used only for evaluation.
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Figure 10: Informativeness of robustness metrics (related to Figure 4). (Left) Similar to Figure 4, but showing all 23 robustness metrics. Difference in
accuracy of a logistic classifier trained to discriminate between model types based on IMAGENET accuracy plus one additional metric, compared to a classifier
trained only on IMAGENET accuracy (higher is better, top 10 metrics shown). Bars show mean±s.d. of 1000 bootstrap samples from the 39 models. (Right)
Increase in classifier accuracy over IMAGENET accuracy when including up to two robustness metrics as explanatory variables. The diagonal shows the
single-feature values from (left).

CIFAR-100 [38], DTD [9], Flowers102 [47], Pets [49], Sun397 [68], SVHN [46]. The specialized group contains remote
sensing datasets EuroSAT [25] and Resisc45 [8], and medical image datasets Patch Camelyon [67] and Diabetic Retinopathy
[34]. The structured group contains the following tasks: counting and distance prediction on CLEVR [33], pixel-location
and orientation prediction on dSprites [45], camera elevation and object orientation on SmallNORB [41], object distance on
DMLab [4] and vehicle distance on KITTI [19].

B. Scale and OOD generalization
Training Details The models are firstly pre-trained on IMAGENET-21K and JFT, and are then fine-tuned on IMAGENET to
match the label space for evaluation. We follow the pre-training and BiT-HyperRule fine-tuning setup proposed in [36].

Specifically, for pre-training, we use SGD with momentum with initial learning rate of 0.1, and momentum 0.9. We use



linear learning rate warm-up for 5000 optimization steps and multiply the learning rate by batch size
256 . We use a weight decay of

0.0001. We use the random image cropping technique from [59], and random horizontal mirroring followed by resizing the
image to 224× 224 pixels. We use a global batch size of 1024 and train on a Cloud TPUv3-128. We pre-train models for the
cross product of the following combinations:

• Dataset Size: {1.28M (1× ImageNet train set), 2.6M (2× ImageNet train set), 5.2M (4× ImageNet train set), 9M (7×
ImageNet train set), 13M (10× ImageNet train set)}.

• Train Schedule (steps): {113K (90 ImageNet epochs), 229K (180 ImageNet epochs), 457K (360 ImageNet epochs),
791K (630 ImageNet epochs), 1.1M (900 ImageNet epochs)}.

For fine-tuning, we use the BiT-Hyperrule as described in [36]: batch size 512, learning rate 0.003, no weight decay, the
classification head initialized to zeros, Mixup [73] with α = 0.1, fine-tuning for 20 000 steps with 384× 384 image resolution.

Additional Results Here we highlight the results equivalent to Figure 3, with the only difference that we consider subsets of
the JFT [57] dataset, instead of IMAGENET-21K (Figure 11). We present the results on the synthetic dataset in Appendix D.
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Figure 11: (Top) Reduction (in %) in classification error relative to the classification error of the model trained for 112k steps on 1M examples (bottom
left corner) as a function of training steps and training set size. The results are for ResNet-50 trained on JFT subsets. (Bottom) Relative reduction (in %)
in classification error going from ResNet-50 to ResNet-101x3 as a function of training steps and training set size (JFT subsets). The reduction generally
increases with the training set size and longer training.

C. Effect of the testing resolution
Cropping details Before applying the respective model, we first resize every image such that the shorter side has length
b1.15 · rc while preserving the aspect ratio and take a central crop of size r × r. For the widely used 224 × 224 testing
resolution, this leads to standard single-crop testing preprocessing, where the images are first resized such that the shorter side
has length 256.

Training details for FixRes For fine-tuning to the target resolution (FixRes) we use SGD with momentum with initial
learning rate of 0.004 (except for the BiT models for which we use 0.0004), and momentum 0.9, accounting for varying batch
size by multiplying the learning rate with batch size

256 . We train for 15 000· batch size
2048 , decaying the learning rate by a factor of 10

after 1/3 and 2/3 of the iterations. The batch size is chosen based on the model size to avoid memory overflow; we use 2048
in most cases. We train on a Cloud TPUv3-64. We emphasize that we did not extensively tune the training parameters for
FixRes, but chose a setting that works well across models and data sets.

Additional results In Figure 12 we provide an extended version of Figure 5 that shows the effect of FixRes for all datasets
and models. In Figure 13 we plot the performance of all models and their FixRes variants as a function of the resolution.
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(b) Two ImageNet-trained EfficientNet variants (B0,B5) as well as those models trained using the Noisy Student protocol.
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Figure 12: Comparison of different types of evaluation preprocessing and resolutions. Default: Accuracy obtained for the preprocessing and resolution
proposed by the authors of the respective models. Best: The accuracy when selecting the best resolution from {64, 128, 224, 288, 320, 384, 512, 768}.
FixRes: Applying FixRes for the same set of resolutions and selecting the best resolution. Increasing the evaluation resolution and additionally using FixRes
helps across a large range of models and pretraining datasets.



250 500 750
Eval. res.

0.25

0.50

0.75

ImageNet

BiT-M-INet21k BiT-M-INet21k-FixRes BiT-S-INet BiT-S-INet-FixRes BiT-M-JFT BiT-M-JFT-FixRes BiT-M-INet21k BiT-M-INet21k-FixRes

250 500 750
Eval. res.

0.00

0.20

0.40

ImageNet-A

250 500 750
Eval. res.

0.50

0.75

1.00

1.25
ImageNet-C

250 500 750
Eval. res.

0.20

0.40

0.60

0.80 ImageNet-V2

250 500 750
Eval. res.

0.00

0.20

0.40

ObjectNet

250 500 750
Eval. res.

0.20

0.40

0.60

ImageNet-Vid-Robust

250 500 750
Eval. res.

0.20

0.40

YouTube-BB-Robust

250 500 750
Eval. res.

0.00

0.20

0.40

ImageNet-Vid-Robust-W

250 500 750
Eval. res.

0.00

0.20

0.40YouTube-BB-Robust-W

250 500 750
Eval. res.

0.00

0.25

0.50

0.75

ImageNet

B0 B0-FixRes B5-NoisyStud B5-NoisyStud-FixRes B0-NoisyStud B0-NoisyStud-FixRes B5 B5-FixRes

250 500 750
Eval. res.

0.00

0.20

0.40

ImageNet-A

250 500 750
Eval. res.

0.50

0.75

1.00

1.25
ImageNet-C

250 500 750
Eval. res.

0.00

0.25

0.50

0.75
ImageNet-V2

250 500 750
Eval. res.

0.00

0.20

0.40

ObjectNet

250 500 750
Eval. res.

0.00

0.20

0.40

0.60

ImageNet-Vid-Robust

250 500 750
Eval. res.

0.00

0.20

0.40

YouTube-BB-Robust

250 500 750
Eval. res.

0.00

0.20

0.40

0.60
ImageNet-Vid-Robust-W

250 500 750
Eval. res.

0.00

0.20

YouTube-BB-Robust-W

250 500 750
Eval. res.

0.40

0.60

0.80
ImageNet

SimCLR-ft-R50x4 SimCLR-ft-R50x4-FixRes SimCLR-ft-R50x1 SimCLR-ft-R50x1-FixRes

250 500 750
Eval. res.

0.00

0.10

0.20

ImageNet-A

250 500 750
Eval. res.

0.60

0.80

1.00

ImageNet-C

250 500 750
Eval. res.

0.20

0.40

0.60

ImageNet-V2

250 500 750
Eval. res.

0.10

0.20

0.30

ObjectNet

250 500 750
Eval. res.

0.20

0.40

0.60
ImageNet-Vid-Robust

250 500 750
Eval. res.

0.20

0.30

0.40

YouTube-BB-Robust

250 500 750
Eval. res.

0.10

0.20

0.30

0.40
ImageNet-Vid-Robust-W

250 500 750
Eval. res.

0.10

0.20

YouTube-BB-Robust-W

250 500 750
Eval. res.

0.20

0.40

0.60

0.80
ImageNet

VIVI-x3 VIVI-x3-FixRes VIVI-x1 VIVI-x1-FixRes

250 500 750
Eval. res.

0.02

0.04
ImageNet-A

250 500 750
Eval. res.

0.80

1.00

1.20
ImageNet-C

250 500 750
Eval. res.

0.20

0.40

0.60

ImageNet-V2

250 500 750
Eval. res.

0.10

0.20

ObjectNet

250 500 750
Eval. res.

0.20

0.40

ImageNet-Vid-Robust

250 500 750
Eval. res.

0.10

0.20

0.30
YouTube-BB-Robust

250 500 750
Eval. res.

0.10

0.20

0.30

ImageNet-Vid-Robust-W

250 500 750
Eval. res.

0.10

0.20
YouTube-BB-Robust-W

250 500 750
Eval. res.

0.40

0.60

0.80
ImageNet

R50x1 R50x1-FixRes

250 500 750
Eval. res.

0.02

0.04

ImageNet-A

250 500 750
Eval. res.

0.80

1.00

1.20
ImageNet-C

250 500 750
Eval. res.

0.20

0.40

0.60

ImageNet-V2

250 500 750
Eval. res.

0.10

0.20

0.30
ObjectNet

250 500 750
Eval. res.

0.20

0.30

0.40

0.50 ImageNet-Vid-Robust

250 500 750
Eval. res.

0.20

0.30

YouTube-BB-Robust

250 500 750
Eval. res.

0.10

0.20

0.30
ImageNet-Vid-Robust-W

250 500 750
Eval. res.

0.10

0.15

0.20

YouTube-BB-Robust-W

Figure 13: Comparison of different types of evaluation preprocessing and resolutions, without modifying the model and after applying FixRes. For brevity the
same shorthands are used in the model names as in Figure 12.

D. Additional results on SI-SCORE, the synthetic dataset
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Figure 14: (Left) Additional sample images from our synthetic dataset. (Right) From SI-SCORE, we find that an ImageNet-trained ResNet-50 has higher
classification accuracy on smaller objects if it uses GroupNorm and higher accuracy on larger objects if it uses BatchNorm. Investigating this phenomena in
detail is outside the scope of this paper - here we simply highlight the potential of investigating models using datasets such as SI-SCORE.
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Figure 15: In the first row of both plots we show the ratio of the accuracy and the best accuracy (across all areas). For the second row (model trained on 2.6M
instances), and other rows, we compute the same normalized score and visualize the difference with the first row. Larger differences imply a more uniform
behavior across relative object areas. We observe that, as the dataset size increases, the average prediction accuracy across various object areas becomes more
uniform. The effect is more pronounced for the larger model. As expected, the improvement is most pronounced for small object sizes covering 10-20% of
the pixels.
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Figure 16: In the first row of both plots we show the ratio of the accuracy and the best accuracy (across all rotations). For the second row (model trained on
2.6M instances), and other rows, we compute the same normalized score and visualize the difference with the first row. Larger differences imply a more
uniform behavior across object rotations. We observe that, as the dataset size increases, the average prediction accuracy across various rotation angles becomes
more uniform. The effect is more pronounced for the larger model.
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Figure 17: In the first column, for each location on the grid, we compute the average accuracy. Then, we normalize each location by the 95th percentile across
all locations, which quantifies the gap between the locations where the model performs well, and the ones where it under-performs (first column, dark blue vs
white). Then, we consider models trained with more data, compute the same normalized score, and plot the difference with respect to the first column. We
observe that, as dataset size increases, sensitivity to object location decreases – the outer regions improve in relative accuracy more than the inner ones (e.g.
dark blue vs white in the second to fifth columns). The effect is more pronounced for the larger model.
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Figure 18: In the main paper, we presented results on the location dataset when not filtering out images where the objects were partially occluded, since that
would exclude many locations from the dataset. For completeness, we present results filtering out objects that are less than 50% or 75% in the image in this
figure and Figure 19.
In the first column, for each location on the grid, we compute the average accuracy. Then, we normalize each location by the 95th percentile across all
locations, which quantifies the gap between the locations where the model performs well, and the ones where it under-performs (first column, dark blue vs
white). Then, we consider models trained with more data, compute the same normalized score, and plot the difference with respect to the first column. We
observe that, as dataset size increases, sensitivity to object location decreases – the outer regions improve in relative accuracy slightly more than the inner
ones (e.g. dark blue vs white in the second to fifth columns). The effect is more pronounced for the larger model. We filter out all test images for which the
foreground object is not at least 50% within the image.
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Figure 19: In the main paper, we presented results on the location dataset when not filtering out images where the objects were partially occluded, since that
would exclude many locations from the dataset. For completeness, we present results filtering out objects that are less than 50% or 75% in the image in this
figure and Figure 18.
In the first column, for each location on the grid, we compute the average accuracy. Then, we normalize each location by the 95th percentile across all
locations, which quantifies the gap between the locations where the model performs well, and the ones where it under-performs (first column, dark blue vs
white). Then, we consider models trained with more data, compute the same normalized score, and plot the difference with respect to the first column. We
observe that, as dataset size increases, sensitivity to object location decreases – the outer regions improve in relative accuracy more than the inner ones (e.g.
dark blue vs white on the second and third columns). The effect is harder to see since most pixels near the edges have been filtered out — here we filter out all
test images for which the foreground object is not at least 75% within the image.



E. Overview of model abbreviations

MODEL NAME TYPE TRAINING DATA ARCHITECTURE DEPTH CH.

R50-IMAGENET-100 SUPERVISED IMAGENET RESNET 50 1
R50-IMAGENET-10 SUPERVISED IMAGENET, 10% RESNET 50 1
BIT-IMAGENET-R50-X1 SUPERVISED [36] IMAGENET RESNET 50 1
BIT-IMAGENET-R50-X3 SUPERVISED [36] IMAGENET RESNET 50 3
BIT-IMAGENET-R101-X1 SUPERVISED [36] IMAGENET RESNET 101 1
BIT-IMAGENET-R101-X3 SUPERVISED [36] IMAGENET RESNET 101 3
BIT-IMAGENET21K-R50-X1 SUPERVISED [36] IMAGENET21K RESNET 50 1
BIT-IMAGENET21K-R50-X3 SUPERVISED [36] IMAGENET21K RESNET 50 3
BIT-IMAGENET21K-R101-X1 SUPERVISED [36] IMAGENET21K RESNET 101 1
BIT-IMAGENET21K-R101-X3 SUPERVISED [36] IMAGENET21K RESNET 101 3
BIT-JFT-R50-X1 SUPERVISED [36] JFT RESNET 50 1
BIT-JFT-R50-X3 SUPERVISED [36] JFT RESNET 50 3
BIT-JFT-R101-X1 SUPERVISED [36] JFT RESNET 101 1
BIT-JFT-R101-X3 SUPERVISED [36] JFT RESNET 101 3
BIT-JFT-R152-X4 SUPERVISED [36] JFT RESNET 50 4
R50-IMAGENET-10-EXEMPLAR SELF-SUP. & COTRAINING [71] IMAGENET, 10% RESNET 50 1
R50-IMAGENET-10-ROTATION SELF-SUP. & COTRAINING [71] IMAGENET, 10% RESNET 50 1
R50-IMAGENET-100-EXEMPLAR SELF-SUP. & COTRAINING [71] IMAGENET RESNET 50 1
R50-IMAGENET-100-ROTATION SELF-SUP. & COTRAINING [71] IMAGENET RESNET 50 1
SIMCLR-1X-SELF-SUPERVISED SELF-SUPERVISED [6], FINE TUNING IMAGENET RESNET 50 1
SIMCLR-2X-SELF-SUPERVISED SELF-SUPERVISED [6], FINE TUNING IMAGENET RESNET 50 2
SIMCLR-4X-SELF-SUPERVISED SELF-SUPERVISED [6], FINE TUNING IMAGENET RESNET 50 4
SIMCLR-1X-FINE-TUNED-10 SELF-SUPERVISED [6], FINE TUNING IMAGENET, 10% RESNET 50 1
SIMCLR-2X-FINE-TUNED-10 SELF-SUPERVISED [6], FINE TUNING IMAGENET, 10% RESNET 50 2
SIMCLR-4X-FINE-TUNED-10 SELF-SUPERVISED [6], FINE TUNING IMAGENET, 10% RESNET 50 3
SIMCLR-1X-FINE-TUNED-100 SELF-SUPERVISED [6], FINE TUNING IMAGENET RESNET 50 1
SIMCLR-2X-FINE-TUNED-100 SELF-SUPERVISED [6], FINE TUNING IMAGENET RESNET 50 2
SIMCLR-4X-FINE-TUNED-100 SELF-SUPERVISED [6], FINE TUNING IMAGENET RESNET 50 4
EFFICIENTNET-STD-B0 SUPERVISED [60] IMAGENET EFFICIENTNET 18 1
EFFICIENTNET-STD-B4 SUPERVISED [60] IMAGENET EFFICIENTNET 37 1
EFFICIENTNET-ADV-PROP-B0 SUPERVISED & ADVERSARIAL [69] IMAGENET EFFICIENTNET 18 1
EFFICIENTNET-ADV-PROP-B4 SUPERVISED & ADVERSARIAL [69] IMAGENET EFFICIENTNET 37 1
EFFICIENTNET-ADV-PROP-B7 SUPERVISED & ADVERSARIAL [69] IMAGENET EFFICIENTNET 64 2
EFFICIENTNET-NOISY-STUDENT-B0 SUPERVISED & DISTILLATION [70] IMAGENET EFFICIENTNET 18 1
EFFICIENTNET-NOISY-STUDENT-B4 SUPERVISED & DISTILLATION [70] IMAGENET EFFICIENTNET 37 1
EFFICIENTNET-NOISY-STUDENT-B7 SUPERVISED & DISTILLATION [70] IMAGENET EFFICIENTNET 64 2
VIVI-1X SELF-SUP. & COTRAINING [66] YT8M, IMAGENET RESNET 50 1
VIVI-3X SELF-SUP. & COTRAINING [66] YT8M, IMAGENET RESNET 50 3
BIGBIGAN-LINEAR BIDIRECTIONAL ADVERSARIAL [14] IMAGENET RESNET 50 1
BIGBIGAN-FINETUNE BIDIRECTIONAL ADVERSARIAL [14] IMAGENET RESNET 50 1

Table 2: Overview of models used in this study. SUP. abbreviates for supervised pre-training. CH. refers to the width multiplier for the number of channels.


