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Overview
In this supplemental material, we first present the de-

tails of the network architecture for predicting the spatially-
variant filters in our SVMAP model, see Sec. A. Section B
provides additional analyses of the proposed approach. Sec-
tion C shows more visual comparisons against previous
methods.

A. Configurations of the Spatially-Variant Fil-
ter Prediction Network

As discussed in the main paper, we use two deep neural
networks to predict the spatially-variant filters, one for the
data term and one for the regularization term. Table 5 lists
the detailed configuration. Note that the networks for pre-
dicting the filters for the data and regularization terms share
the same architecture, but the parameters are not shared.

Table 5. Parameters of the spatially-variant filter prediction net-
work. Conv denotes a convolutional layer. CR denotes a convo-
lutional layer followed by a ReLU. Recall that the filters for the
data term and regularization term have sf ×sf and sg ×sg pixels,
respectively. The number of filters for the data term and regular-
ization term are M and N , respectively. The number of output
features, nf , is thus set as s2fM when predicting the filters for the
data term and s2gN for the regularization term.

Layers Kernel size Number of features Stride

CR1 3× 3 64 1
CR2 3× 3 64 1
CR3 3× 3 64 1
CR4 3× 3 64 1
CR5 3× 3 64 1
Conv 3× 3 nf 1

B. Additional Analyses and Discussions
B.1. Spatially-variant vs. invariant MAP models

Our goal in this section is to complement the discussion
on the effect of predicting spatially-variant filters in Sec. 5
of the main paper. In order to demonstrate the effectiveness

Table 6. Parameters of the pixel-dependent weight prediction net-
work for the regularization term in the SIMAP baseline. CR de-
notes a convolutional layer followed by a ReLU. We denote the
number of filters for the regularization term as N .

Layers Kernel size Number of features Stride

CR1 3× 3 64 1
CR2 3× 3 64 1
CR3 3× 3 64 1
CR4 3× 3 64 1
CR5 3× 3 64 1
CR6 3× 3 N 1

of our learned spatially-variant MAP model (SVMAP), we
compare to a learned spatially-invariant model (SIMAP for
short) in Tab. 4 of the main paper. For this baseline, since
the pixel-dependent weights {ωd

i , ω
r
j} in Eq. (11) of the

main paper cannot be absorbed into the spatially-uniform
filters {fi, gj}, we need to predict {ωd

i , ω
r
j , fi, gj} by ap-

propriate networks. For fair comparison, we use the same
network architecture as for our approach (Tab. 5) to predict
the spatially-uniform filters {fi, gj}. The network outputs
s2fM and s2gN features for predicting {fi} and {gj}, re-
spectively, in feature maps that have the same size as the in-
put image. To obtain the spatially-uniform filters, we apply
global average pooling to generate s2fM and s2gN features
of 1× 1 pixels. Then we reshape the outputs to M filters of
sf×sf pixels to obtain {fi}, and to N filters of sg×sg pix-
els to yield {gj}. The network parameters are not shared,
as in the spatially-variant case.

The detailed network architectures for predicting {ωr
j}

and {ωd
i } are shown in Tabs. 6 and 7. As discussed in pre-

vious work [3, 6, 27], the robust penalty function for the
data term should be less sensitive to outlying measurements.
Note that the weights {ωd

i } in the IRLS iteration are propor-
tional to the derivative of the penalty function. When the
value of the residual image increases beyond a threshold,
these weights should not increase further, as these locations
likely correspond to outliers. Thus, we adopt a sigmoid out-
put layer to regularize the network for predicting {ωd

i }, im-
plicitly ensuring the robustness of the learned data term.



Table 7. Parameters of the pixel-dependent weight prediction net-
work for the data term in the SIMAP baseline. CR denotes a con-
volutional layer followed by a ReLU. CS denotes a convolutional
layer followed by a sigmoid function. We denote the number of
filters for the data term as M .

Layers Kernel size Number of features Stride

CR1 3× 3 64 1
CR2 3× 3 64 1
CR3 3× 3 64 1
CR4 3× 3 64 1
CR5 3× 3 64 1
CS 3× 3 M 1

Table 8. Model size comparisons of our learned spatially-variant
MAP model (SVMAP) and the learned spatially-invariant baseline
model (SIMAP). M and N denote the number of filters for the data
and regularization terms, respectively.

SIMAP SVMAP (ours)

(M,N) (3, 5) (3, 5)

Total parameters (M) 1.92 1.29

Table 9. Effectiveness of predicting spatially-variant filters. All
methods are evaluated on the dataset of [24] with 1% Gaussian
noise (kernel size from 13 × 13 to 35 × 35 pixels). M and N
denote the number of filters for the data and regularization terms,
respectively.

SIMAP SVMAP (ours)

(M,N) (3, 5) (9, 15) (18, 30) (3, 5)

PSNR (dB) / SSIM 31.25/0.8861 31.36/0.8887 31.40/0.8900 31.89/0.8973

Next, we compare the model size of our spatially-variant
model and the spatially-invariant baseline method SIMAP
in Tab. 8. As the spatially-invariant baseline SIMAP needs
to predict both the filters {fi, gj} and the weights {ωd

i , ω
r
j},

the total number of parameters is actually larger than ours.
In addition, as shown in Tab. 4 of the main paper, our
approach performs notably better than the SIMAP base-
line, which demonstrates the effectiveness of predicting
spatially-variant filters within the MAP framework.

We further evaluate whether predicting more spatially-
invariant filters can achieve a similar performance as pre-
dicting spatially-variant filters. Table 9 shows that using
more spatially-invariant filters (SIMAP with M=9, N=15
or with M = 18, N = 30) can slightly improve the results,
but still performs worse than our spatially-variant formula-
tion (SVMAP with M=3, N=5).

B.2. Iteration-dependent vs. indenpendent filters

As stated in Sec. 3.3 of the main paper, we use the same
network architecture in different IRLS iterations, but the
network parameters are not shared across iterations. We fur-
ther compare with a baseline method (SVMAPshare for short)
that shares the network parameters across various IRLS it-

Table 10. Effectiveness of predicting iteration-dependent filters.
All methods are evaluated on the dataset of [24] with 1% Gaus-
sian noise (kernel size from 13× 13 to 35× 35 pixels).

SVMAPshare SVMAP (ours)

PSNR (dB) / SSIM 31.64/0.8929 31.89/0.8973

Table 11. Effectiveness of the number of updating iterations in
IRLS. All methods are evaluated on the dataset of [24] with 1%
Gaussian noise (kernel size from 13× 13 to 35× 35 pixels).

Iterations 1 2 3 50

[21] 24.11/0.6308 25.33/0.6946 26.15/0.7301 29.21/0.8260
SVMAP (ours) 31.47/0.8889 31.89/0.8973 32.06/0.8993 –

erations and is implemented in the same way as ours oth-
erwise. Table 10 shows that our approach achieves bet-
ter image quality than the baseline method with iteration-
independent filters, which demonstrates the effectiveness of
predicting iteration-dependent filters.

B.3. Effect of the number of updating iterations

Since we use the IRLS method to solve the problem in
Eq. (10b) of the main paper, one needs to iteratively up-
date the filters and estimate the latent image. Since we use
deep neural networks to predict the filters, we do not need
as many iterations as classical IRLS methods. To verify
this, we evaluate the effect of the number of iterations by
varying it from 1 to 3. In addition, we also compare with
the method of Levin et al. [21], which uses a classical IRLS
approach. Table 11 shows that our method with 2 updating
iterations can already achieve good results and using more
iterations does not improve the image quality very signifi-
cantly. In contrast, [21] needs about 50 iterations to reach
convergence. Thus, directly estimating the components in
the IRLS method can significantly improve the image qual-
ity and reduce the number of required iterations.

B.4. Model size and run-time

Next, we compare the model size and the average run-
time of our approach to a selection of representative meth-
ods in Tab. 12. We benchmark the run-time on a machine
with an Intel Xeon E5-2650 v4 CPU and an NVIDIA TI-
TAN Xp GPU. The proposed approach tends to have more
parameters than previous work, as the network for predict-
ing the spatially-variant filters does not share its parameters
across the various IRLS iterations. However, the average
run-time of our approach is comparable or even less than
other evaluated methods with smaller model sizes. Note that
the methods [12, 49, 50] need several iterations to achieve
reasonable accuracy, e.g. [12, 50] set the number of itera-
tions to 30. In contrast, by integrating the MAP-based opti-
mization framework as a constraint, we develop an end-to-
end network to learn spatially-variant iteration-dependent
filters for each IRLS iteration. As demonstrated in Sec. B.3



Table 12. Model size and run-time. We evaluate all methods on the
same machine in the same settings. The average run-time is tested
on images from [41] with 800× 1024× 3 pixels.

FCN [49] IRCNN [50] RGDN [12] SVMAP

Total parameters (M) 0.45 0.19 1.26 1.29
Run-time (s) 2.81 4.59 11.27 2.94

and Tab. 11, our approach does not need as many iterations
as classical IRLS methods and using 2 updating iterations
can already achieve good results. Thus, the proposed ap-
proach is efficient with favorable accuracy.

B.5. Visualization of predicted spatially-variant fil-
ters

To intuitively illustrate what spatially-varying filters the
network learns to predict, we show the visualization of some
predicted filters in Fig. 7. The blurry input and ground truth
are shown in Fig. 7(a) and (g). Figure 7(b) is the initial re-
sult used to bootstrap the IRLS algorithm; this initialization
is obtained by deconvolving with an `2 norm-based data
term and a Gaussian prior. As the `2 data term is not robust
to outliers and the Gaussian prior cannot fully capture the
characteristic properties of clear images, the deconvolved
result in Fig. 7(b) contains significant artifacts in the satu-
rated areas and the fine-scale structures are not recovered
well. Figure 7(e) and (h) are the predicted spatially-variant
filters for the data term and the regularization term, which
are predicted from Fig. 7(b). For better understanding, we
show all the predicted filters in an image, i.e. for each pixel
in the image, a filter of sf × sf pixels (for the data term) or
sg × sg pixels (for the regularization term) is shown.

As shown in Fig. 7(e) and (h), both the filters predicted
for the data term and the regularization term can effectively
capture the spatially-variant image characteristics. Specif-
ically, since the data term measures the goodness-of-fit,
the filters fi predicted for the data term vary depending
on the image reconstruction error (in the sense of Eq. (5)
of the main paper). We note that the initial latent image
in Fig. 7(b) exhibits significant errors in saturated areas.
Comparing this to the predicted filters in Fig. 7(e), we ob-
serve that the trained network predicts quite different filters
for saturated areas (with larger reconstruction errors) than
in non-saturated areas (with smaller reconstruction errors).
This improves the quality of the latent image (Fig. 7(c)), but
saturated pixels continue to violate the underlying convolu-
tional assumption of the data term (as stated in Sec. 3.1 of
the main paper). Thus, even further iterations show different
filters being predicted for areas with and without saturation
(Fig. 7(f)). Similarly, the predicted filters gj for the regu-
larization term are based on the latent image and can adapt
to the image content. Hence, differing gj are predicted for
different image structures, e.g., flat and textured areas in

Fig. 7(h) and (i). Finally, our approach generates a better
deblurred image with finer structures and detail (Fig. 7(d)).
We additionally visualize the predicted spatially-variant fil-
ters on another example in Fig. 8, which shows similar prop-
erties of the predicted filters as those in Fig. 7. The compar-
isons in Figs. 7 and 8 further demonstrate the effectiveness
of the proposed spatially-variant MAP model for non-blind
image deblurring.

B.6. Our learned regularizer vs. the regularizer con-
structed by pre-trained deep CNNs

The method of Zhang et al. [50] decouples the data term
and the regularization term into two individual subprob-
lems and solves the regularization term-related one by a pre-
trained CNN denoiser, which contains 7 convolutional lay-
ers. In contrast, we jointly learn both the data and regular-
ization terms, where our network involves 6 convolutional
layers to predict the filters for constructing the regularizer
in Eq. (12). Since our joint learning of both the data and
regularization terms takes advantage of their interplay, our
approach is able to build more expressive deblurring mod-
els. Note that the `2 data term is theoretically the most suit-
able one to model the Gaussian noise underlying the dataset
used in Tab. 1 of the main paper. However, our approach
still performs better than [50] with the `2 data term, preserv-
ing finer detail as shown in Fig. 11 of the main paper, which
highlights the effectiveness of jointly learning the data and
regularization terms.

B.7. Model generalization ability

Although the proposed method learns an image-adaptive
model, we have shown in Sec. 4 of the main paper that our
model trained on one image dataset can be applied to im-
ages from other datasets. Specifically, to train the model
for handling blurry images with Gaussian noise, we use
the training datasets from [23, 24]. Then we evaluated our
trained model on the test datasets of [24, 41] in Tab. 1,
where the dataset by Sun et al. [41] is a dataset different
from the training dataset. For handling blurry images with
saturated areas, as stated in Sec. 4.1, we use the training
data collected from Flickr and test on images from the lit-
erature [6, 10, 27, 47], so that the training and test datasets
are also different. Thus, our model trained on one image
dataset generalizes to other datasets. We further evaluate
our approach on several real-world images in Figs. 5, 14
and 15, which are more complex than the images in the
training datasets, to demonstrate the generalization ability
of our image-adaptive model.

B.8. More experimental results on blurry images
with other degradations

In the main paper, we evaluate our model on blurry im-
ages with the two most common degradations, i.e. Gaussian



(a) Blurry input (b) Result of iteration 0 (c) Result of iteration 1

(d) Ours (i.e. Result of iteration 2) (e) fi predicted from (b) for iteration 1 (f) fi predicted from (c) for iteration 2

(g) Ground truth (h) gj predicted from (b) for iteration 1 (i) gj predicted from (c) for iteration 2

Figure 7. Visualization of predicted spatially-variant filters. By predicting spatially-variant filters for both the data term (e), (f) and the
regularization term (h), (i), our approach can effectively leverage pixel-dependent properties of the image structure and generate a much
clearer image with finer detail as shown in (d). (Best viewed on high-resolution display with zoom-in.)



(a) Blurry input (b) Result of iteration 0 (c) Result of iteration 1

(d) Ours (i.e. Result of iteration 2) (e) fi predicted from (b) for iteration 1 (f) fi predicted from (c) for iteration 2

(g) Ground truth (h) gj predicted from (b) for iteration 1 (i) gj predicted from (c) for iteration 2

Figure 8. Visualization of predicted spatially-variant filters on another example. By predicting spatially-variant filters for both the data
term (e), (f) and the regularization term (h), (i), our approach can effectively leverage pixel-dependent properties of image structure and
generate a much clearer image with finer-detail in (d). (Best viewed on high-resolution display with zoom-in.)

noise and saturated pixels. In this section, we provide more
experimental results on blurry images with other degrada-
tions. Table 13 shows a quantitative comparison on the
dataset of [24], where the blurry images have 1% Gaus-

sian noise added and were then JPEG compressed with a
quality parameter of 90. Our approach performs substan-
tially better than the competing methods. Figure 9 shows
some visual comparisons, where [6, 11, 50] suffer from vis-



(a) Blurry input (b) IRCNN [50] (c) LDT [11] (d) Cho et al. [6] (e) SVMAP (ours)

Figure 9. Example with simulated blur, Gassian noise, and JPEG compression from the dataset of [24]. The methods [6, 11, 50] cannot
effectively generate clear images and their results contain severe noise and artifacts. Compared to these methods, our SVMAP approach
recovers a much clearer image with finer detail. (Best viewed on high-resolution display with zoom-in.)

(a) Blurry input (b) Xu et al. [54] (c) LDT [11] (d) Cho et al. [6] (e) SVMAP (ours)

Figure 10. Example with simulated blur and impulse noise from the dataset of [41]. The results from [6, 11, 54] generally have less detail
and partly exhibit artifacts. In contrast, our SVMAP approach recovers a clear image with fine structures. (Best viewed on high-resolution
display with zoom-in.)

Table 13. Quantitative comparison to state-of-the-art methods on
the dataset of [24] with Gaussian noise and JPEG compression.

IRCNN [50] LDT [11] Cho [6] SVMAP

PSNR(dB) / SSIM 28.79/0.8209 26.41/0.7389 28.64/0.8205 30.05/0.8604

ible noise and artifacts. In contrast, our method is able to
recover much clearer images.

We additionally show some visual comparisons in
Fig. 10 on the dataset of [41] with 1% impulse noise added.
Our approach achieves favorable performance against state-
of-the-art methods [6, 11, 54] that are specialized in and ef-
fective for handling impulse noise. As shown, our method
is effective in preserving fine detail and obtains a clear im-
age despite not being specialized to this task, supporting the
observation that our spatially-variant MAP model can adapt
to different scenarios.

C. Qualitative Comparisons
We finally provide additional visual comparisons with

various competitive methods [11, 12, 18, 36, 38, 39, 49, 50,
52] including the previous state of the art on images with
both simulated blur (Figs. 11 to 13) and real camera shake
(Figs. 14 and 15).
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(a) Blurry input (b) EPLL [52] (c) MLP [38]

(d) CSF [36] (e) LDT [11] (f) FCN [49]

(g) IRCNN [50] (h) FNBD [39] (i) SVMAP (ours)

Figure 11. Example with simulated blur (1% noise level) from the dataset of [24]. The results by [38, 39, 50] contain significant artifacts
in (c), (g), and (h). The methods [11, 36, 49, 52] oversmooth fine-scale structures in (b) and (d)–(f). Compared to existing methods, our
SVMAP approach can effectively preserve finer detail as shown in (i). (Best viewed on high-resolution display with zoom-in.)



(a) Blurry input (b) EPLL [52] (c) MLP [38]

(d) CSF [36] (e) LDT [11] (f) FCN [49]

(g) IRCNN [50] (h) RGDN [12] (i) SVMAP (ours)

Figure 12. Example with simulated blur (1% noise level) from the dataset of [24]. The deblurred image by [38] exhibits severe artifacts
in (c). For other methods, fine-scale structures are not effectively recovered in (b) and (d)–(h). In contrast, our SVMAP approach can
effectively restore a clear image with finer detail as shown in (i). (Best viewed on high-resolution display with zoom-in.)



(a) Blurry input (b) EPLL [52] (c) MLP [38]

(d) CSF [36] (e) LDT [11] (f) FCN [49]

(g) FDN [18] (h) RGDN [12] (i) SVMAP (ours)

Figure 13. Example with simulated blur (5% noise level) from the dataset of [41]. The methods [11, 12, 18, 36, 38, 49, 52] do not effectively
recover fine-scale structures and detail in (b)–(h). Compared to existing methods, our SVMAP approach can preserve finer detail, e.g. the
railing and characters in (i).



(a) Blurry input (b) EPLL [52] (c) MLP [38]

(d) CSF [36] (e) LDT [11] (f) FCN [49]

(g) IRCNN [50] (h) FNBD [39] (i) SVMAP (ours)

Figure 14. Example with real camera shake from [53]. The kernel in (a) is estimated by the method of [27]. The fine-scale structures in
(b), (e), and (f) are over-smoothed by the methods of [11, 49, 52]. The results generated by [36, 38, 39, 50] have severe artifacts in (c), (d),
(g), and (h). Compared to the competing methods, our deblurred image in (i) is better recovered.



(a) Blurry input (b) EPLL [52]

(c) MLP [38] (d) CSF [36]

(e) LDT [11] (f) FCN [49]

(g) IRCNN [50] (h) FDN [18]

(i) RGDN [12] (j) SVMAP (ours)

Figure 15. Example with real camera shake from [54]. The kernel in (a) is estimated by the method of [53]. The results obtained by the
methods [12, 18, 36, 38, 50] contain significant artifacts or color distortions in (c), (d), and (g)–(i). The methods of [11, 49, 52] do not
effectively restore fine-scale structures and detail as shown in (b), (e), and (f). In contrast, our SVMAP approach generates a much clearer
image with finer detail in (j).


