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A. Additional Visualizations
For each of our experiments conducted in the main pa-

per, we provide additional video material, consisting of 17
videos in total. To further highlight the benefits of our pro-
posed framework, in the course of our supplemental video
material, we compare to five approaches. Due to the col-
lective large size of the videos, the supplemental with the
corresponding videos is provided on our project page1.
For each video, multiple cycles are shown (indicated left-
bottom) as well as the corresponding video playback rate in
frames-per-second (FPS) (right-bottom). The file structure
of our provided video material is as follows:

supplemental_material_222
|
+--A1-Landscape
|
+--A2-iPER

*Indicates equal supervision.
1https://bit.ly/3dg90fV

|
+--A3-DTDB
|
+--A4-BAIR
|
+--A5-Controllable_Video_Synthesis
|
+--A6-Failure_Cases

We next discuss the video material for each experi-
ment individually. Each subsection matches its cor-
responding file (e.g., ‘A.1.Landscape’ corresponds to
‘...--A1-Landscape’) which contains the discussed
video sequences.

A.1. Landscape

For the Landscape dataset [32], we provide the cor-
responding video (Landscape_samples.mp4) to the
samples depicted in Fig. 3 in the main paper. Addi-
tionally, we show a qualitative comparison to previous
work, i.e., AL [6], DTVNet [33], and MDGAN [32] in
Landscape_comparison.mp4, with ‘GT’ denoting
the ground-truth. We clearly observe that our model syn-
thesizes more appealing and realistic video sequences com-
pared to the the competing methods. Both MDGAN [32]
and DTVNet [33] produce blurry videos when using the of-
ficially provided pretrained weights and code from the re-
spective webpages. While AL produces decent animations
in the presence of small motion, when animating fast mo-
tions, however, warping artifacts are present, cf. e.g., row
3. These artifacts become even more evident when AL is
applied to DTDB (Sec. A.3). In contrast, our method pro-
duces realistic looking results in the case of both small and
large motions. Next, we evaluate the diversity of the gen-
erated samples in Landscape_diversity.mp4. The
video contains multiple future progressions for a given start-
ing frame, x0. It can be seen that our approach pro-
duces diverse samples capturing a broad range of motion
directions, as well as speeds. Moreover, we demonstrate
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in Landscape_longer_duration.mp4 the capabil-
ity of our model to synthesize longer sequences (48 frames)
by sequentially applying our model on the last frame of the
previously predicted video sequence.

A.2. iPER

For the iPER dataset [18], we provide the correspond-
ing video (iPER_samples.mp4) to the samples depicted
in Fig. 4 in the main paper. We further provide a qualita-
tive comparison to the best performing method IVRNN [3]
on iPER in iPER_comparison.mp4 with ‘GT’ denot-
ing the ground-truth. Our method produces more natural
motions, e.g., row 3, compared to [3]. Note, that both meth-
ods suffer from artifacts due to the low image resolution of
64× 64, such as vanishing hands in motion.

A.3. DTDB

For each dynamic texture from DTDB [9] used in
our main paper, we provide examples (Clouds.mp4,
Fire.mp4, vegetation.mp4, Waterfall.mp4) for
stochastic image-to-video synthesis for random starting
frames, x0, comparing our proposed approach to AL [6]
and DG [31]. As described in the main paper, DG [31]
is directly optimized on test samples, thus overfitting di-
rectly to the test distribution. Consequently, we observe that
their generations almost perfectly reproduce the ground-
truth motion which is most evident for the clouds texture.
However, their method suffers from blurring due to opti-
mization using an L2 pixel loss. Similar to the comparisons
on the Landscape dataset (Sec. A.1), AL [6] has problems
with learning and reproducing the motion of dynamic tex-
tures exhibiting rapid motion changes, such as fire. This
is explained by the susceptibility of optical flow to inac-
curacies when capturing very fast motion, as well as dy-
namic patterns outside the scope of optical flow, e.g., flicker.
Moreover, in the clouds examples (last row) AL wrongly
sets the landscape into motion. Our model, on the other
hand, produces sharp video sequences with realistic look-
ing motions for all textures.

A.4. BAIR

In BAIR_comparison.mp4, we provide a qualitative
comparison to a strong baseline, IVRNN [3], on the BAIR
dataset [5]. While both approaches are able to render the
robot’s end effector and the visible environment well, we
observe significant differences when it comes to the effec-
tor interacting with or occluding background objects. An
example of this difficulty can be seen when interacting with
the object in the middle of the scene in row 2. IVRNN
is unable to depict the object structure and texture during
the interaction which results in heavy blur due to averag-
ing over all possible future states. In contrast, this inter-
action looks much more natural in the video sequence pre-

dicted by our model (also row 2). Moreover, the last row
(back of the scene, right) illustrates a problem of IVRNN
which sometimes occurs in the presence of object occlu-
sions. Specifically, the object which is occluded at the
beginning is eventually revealed and is synthesized as a
blurry texture, by that, averaging over all possible realiza-
tions. Again, our model does not suffer from this prob-
lem and correctly handles object occlusions. Additionally,
BAIR_diversity.mp4 qualitatively illustrates the pre-
diction diversity of our model by animating a fixed starting
frame x0 multiple times. Again, ‘GT’ denotes ground-truth.
Our model synthesizes diverse samples by broadly covering
motions in the x, y, and z directions.

A.5. Controllable Video Synthesis

In this section, we present qualitative experiments for
the following controlled video prediction task: controlled
image-to-video synthesis, motion transfer, and controlled
video-to-video synthesis.
Controlled image-to-video synthesis. The video
Endpoint_BAIR.mp4 illustrates several image-to-video
generations while controlling η = (x, y, z), the 3D end
effector position, similar to Fig. 6 in our main paper. It
shows that, while in each example the effector approxi-
mately stops at the provided end position (end frame of
GT), its movements between the starting and end frame,
which are inferred by the sampled residual representations
ν ∼ q(ν), exhibit significantly varying and natural progres-
sions. Moreover, in Direction_Clouds1.mp4we pro-
vide additional video examples for controlling the direction
of cloud movements with η, similar to Fig. 7 in our main
paper. We observe that our model renders crisp future pro-
gressions (row 2-5) of a given starting frame x0, while fol-
lowing our provided movement control (top row).
Motion transfer. Next, we analyze the application of our
model for the task of directly transferring a query motion
extracted from a given landscape video X̃ to a random start-
ing frame x0. To this end, we extract the residual represen-
tation ν̃ of X̃0 by first obtaining its video representation z̃ =
q(z|X̃) and corresponding residual ν̃ = T −1θ (z̃; x̃0) with
x̃0 being the starting frame of X̃ . We use ν̃ to animate the
starting frame x0. Transfer_Landscape.mp4 shows
that our model accurately transfers the query motion, e.g.,
as the corresponding direction and speed of the clouds, to
the target landscape images (rows 1-3, left-to-right).
Controlled video-to-video synthesis. In controlled video-
to-video synthesis, we explicitly adjust the initial factor
η̃ of an observed video sequence X̃ . To this end, we
first obtain its video representation z̃ = qφ(z|X̃) fol-
lowed by extracting the corresponding residual information
ν̃ = T −1θ (z̃; x̃0, η̃). Subsequently, to generate the video se-
quence depicting our controlled adjustment of X̃ , we sim-
ply choose a new value η̃ = η̃∗ and perform the image-
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to-sequence inference process. This can be seen in the
video Direction_Clouds2.mp4 using cloud video se-
quences from DTDB [9]. In each example (second row), the
motion direction of the query video (leftmost) is adjusted by
the provided control (top row). To highlight that the resid-
ual representations ν in these cases actually correspond to
the query video, we additionally animate the initial image of
the query videos by sampling a new residual representation
ν ∼ q(ν) and apply the same controls (bottom rows). We
observe that, while the directions of the synthesized videos
are identical, their speeds are significantly different, as de-
sired. In the case of video-to-video synthesis, the movement
speed remains the same, in contrast to the image-to-video
case, where the movement speed has changed due to the
changed residual representation.

A.6. Failure Cases

We highlight here two types of failure cases we observed
which are visualized in the video Failure_cases.mp4:

• When the starting frame depicts a complex posture
(e.g., folded arms or a leg in the air) on iPER [18]
the model has difficulty synthesizing realistic contin-
uations.

• While the Landscape dataset [32] mainly covers natu-
rally progressing cloud motions, there is also a small
subset of fast timelapse videos. Due to the underrep-
resentation of such examples in the dataset, our model
struggles to correctly capture fast paced timelapse data
without explicitly resorting to data-balancing tech-
niques during training.

B. Implementation Details
Here, we provide a detailed overview of our network

architecture as well as the training procedure. The Py-
Torch [22] implementation of our framework is available
on our project page.

B.1. Network Details

Encoder. The encoder qφ(z|X) follows the structure of a
3D ResNet [10] using GroupNorm [30] as a normalization
layer. Two convolutions with a kernel size of 4× 4 are used
to obtain an one-dimensional latent representation for rep-
resenting the mean µ and log variance log σ2. During train-
ing, we sample from qφ(z|X) using the the reparametriza-
tion trick [16, 23].
Decoder. The decoder pψ(X|x0, z) consists of n = 6
video residual blocks, with each block followed by nearest-
neighbor upsampling to upscale the feature map in space
and time (except the last one). This structure is illustrated
in Fig. 1. The video representation, z, is inserted into the
generator using a fully connected layer matching the initial

Figure 1. Overview of the decoder structure.

feature map. The hyperparameters λ and λF are both set to
10. The channel factor, chf , defines the number of channels
and by that, the depth of the model. For BAIR and iPER, we
set chf to 64, otherwise we set it to 32. Depending on the
dataset, time length, and resolution, the last two up-scaling
layers needs to be adjusted. The video representation z is in-
serted to the decoder using a fully connected layer matching
the initial feature map. We use GroupNorm [30] in SPADE
[21] and instance normalization in the ADAIN [12] layer.
If the input and the output channels do not match, a 1 × 1
convolution is used to adjust the channel dimensions. For
matching the output channels, we use a 3D convolution fol-
lowed by a Tanh activation function. Moreover, spectral
norm [20] is used in the decoder.

Bijective Transformation. The bijective transformation,
Tθ, is realized as a normalizing flow consisting of a stacked
sequence of nf invertible neural networks (INNs) operating
on the video representation, z. We use nf = 20 invert-
ible blocks for all datasets except for BAIR where we set
nf = 40. Each block consists of actnorm [15], affine cou-
pling layers [4], and fixed shuffling layers, following pre-
vious work [24]. Each affine coupling layer is parameter-
ized by two fully connected layers. In every affine coupling
layer, we additionally insert the conditioning information
following previous work [1, 24]. The feature representation
for the starting frame x0 is obtained by a pretrained Autoen-
coder optimized for reconstructing images.

Discriminators. For the static discriminator, a patch dis-
criminator [11] is used and for the temporal discriminator a
3D ResNet [10].
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Method Landscape Fire Vegetation Waterfall Clouds
AL[6] 4.53 0.36 0.30 0.80 1.22
Ours 5.21 1.42 1.21 1.11 1.51

Table 1. Diversity scores based on the I3D [27] trained on
DTDB [9]. The average difference between ground-truth samples
are a factor of ∼ 1000 smaller for the I3D [27] network trained on
DTDB [9] as the one trained Kinetics [13]. For presentation pur-
poses, the numbers in the table have been multiplied by a factor of
1000.

B.2. Training Details

The loss objective for the generative model of a video
sequence X = [x1, . . . , xT ] ∼ pX(X) ∈ RdX with the
corresponding starting frame x0 ∈ Rdx and a video repre-
sentation z ∼ qφ(z|X) ∈ Rdz can be written as

Lpψ,qφ =EX∼pX (X)

z∼qφ(z|X)

[
λ[‖ X − pψ(X|x0, z) ‖1

+ `φ(X, pψ(X|x0, z))]−DT (pψ(X|x0, z))

−DS(pψ(X|x0, z)) + λF `F (X, pψ(X|x0, z))
]

+ βDKL(qφ(z|X)||q(z)) ,
(1)

where `F denotes the feature matching loss [29] to stabilize
the training.

The loss objective for the temporal discriminator can be
written as

LDT = EX∼pX(X)

[
ρ(1−DT (X)) + λGP ‖ ∇DT (X) ‖22

]
+ EX∼pX (X)

z∼qφ(z|X)

[ρ(1 +DT (pψ(X|x0, z))],

(2)

where ‖ ∇DT (X) ‖22 denotes the gradient penalty [19, 8]
to stabilize the discriminator training and ρ the ReLU acti-
vation function. The weighting factor λGP was set to 10.

For the spatial discriminator, the objective can be formu-
lated as

LDS = EX∼pX(X)[ρ(1−DS(X)]

+ EX∼pX (X)

z∼qφ(z|X)

[ρ(1 +DS(pψ(X|x0, z))]. (3)

The overall loss objective can be summarized as

L = Lpψ,qφ + LDT + LDS . (4)

Our video synthesis model is trained using Adam [14] with
a learning rate of 2 · 10−4, β1 = 0.5, β2 = 0.9, weight
decay of 10−5, and exponential learning rate decay. The
dimension of z is set to dz = 128 for all datasets except
for iPER, where it is set to 64. The weighting term β of the
Kullback-Leibler divergence lossDKL is set to β = 1·10−6.
For the controllable video synthesis task, we discretize the
conditioning ν1 to one-hot vectors. For the 3D end effector

Method VGG Cosine VGG MSE I3D MSE
SAVP†,3 [17] 0.000 0.00 0.01
SRVP3 [7] 0.040 0.34 1.01
IVRNN3 [3] 0.023 0.23 0.57
Ours 0.042 0.58 1.76

Table 2. Comparison of different diversity metrics on iPER [18]. †

SAVP experienced mode collapse due to training instabilities orig-
inating from the two involved discriminators. The VGG based fea-
ture extractors have been pretrained on ImageNet [25]. The I3D
feature extractor has been pretrained on Kinetics [2]. 3 denotes
models trained using the official code from their corresponding
webpages.

position, the z axis is discretized into 16 bins and the x and
y axes into 32 bins. For the clouds, the motion direction is
discretized into 36 bins. The 3D end effector position was
provided by [5] and for the clouds [9] we manually labelled
the direction. The normalizing flow, Tθ, was trained using
Adam [14] with a learning rate of 1 · 10−5.

C. Evaluation Details

C.1. Diversity Metric

Besides synthesis quality, diversity is the main criteria
we use to evaluate and compare stochastic video synthesis
approaches. The assessment of diversity is typically based
on measures utilizing feature representations of pretrained
models [17, 34]. For instance, SAVP [17] uses a VGG
network [26] trained for classification on ImageNet [25] to
yield frame-wise representations of video sequences. Based
on these representations, videos are compared based on
their frame-wise differences measured using a given dis-
tance metric. The guiding intuition is that more diverse
sample sets should exhibit larger feature differences on av-
erage. To this end, SAVP [17] uses the Cosine distance.
We argue that this evaluation distance has a major draw-
back: the Cosine distance only measures the angle between
feature vectors, thus discarding crucial information repre-
sented by the vector norms. For instance, two data points
may lie approximately on a line (i.e., a Cosine distance of
0) but still are located far from each other. Hence, diversity
is measured based on incomplete information.

To circumvent this issue, we propose to replace the Co-
sine distance with the Euclidean distance which also takes
the magnitude of a vector into account. Moreover, to ex-
plicitly capture temporal information, we also investigate
replacing the frame-based VGG feature extractor with an
I3D model [27] which directly yields representations that
capture the appearance and dynamics of the entire video se-
quence. Tab. 2 compares the discussed diversity measures.
It can be seen that independent of the diversity measure, the
order of the approaches is the same. We employ both VGG
MSE and I3D MSE measures in our experiments. Note
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that the I3D feature extractors have been trained on simi-
lar datasets as the videos to be evaluated, i.e., Kinetics [13]
for human motion [18] and DTDB [9] for Landscape [32].

Moreover, we report the missing diversity scores based
on the I3D [27] from the main paper on Landscape [6] and
DTDB [9] in Tab. 1.

C.2. Evaluation Protocol

For comparisons on each dataset, we use the reported
numbers from the corresponding paper, where possible,
otherwise we use pretrained models or train models from
scratch using the code from the official webpage2. Here, we
list the evaluation protocol for each dataset.
BAIR [5]. We follow the standard protocol [28] for com-
puting the FVD score by evaluating videos on a sequence
length of 16 on a resolution of 64 × 64 using all 256 test
videos. Diversity is measured by predicting five future
progression given the starting frames from all 256 test se-
quences and computing the Euclidean distance in the VGG-
16 [26] as well as in the I3D [27] feature space between the
corresponding generated videos.
iPER [18]. For evaluating the FVD score, we use 1000
randomly sampled sequences from the test set as well as
the corresponding generations. Note, for a fair comparison,
we concatenate the last conditioning frame to the generated
rather than all conditioning frames since previous work con-
dition on up to eight frames. This results in a sequence of
length 17 for computing the FVD score. For computing the
diversity, we predict five future progression for each of the
1000 test sequences and measure the diversity based on that.
Landscape [32]. We create an evaluation set by randomly
sampling six times sequences of length 32 from each test
video with length over 32 resulting in 918 videos. Based on
these sequences, FVD, DTFVD, LPIPS, and FID are com-
puted. As explained in the main paper, our model is trained
on a sequence length of 16 but applied two times by us-
ing the last predicted frame as input for the next prediction.
For diversity, we again generate five future progressions for
each sequence of the 918 evaluation sequences and use the
same procedure described for BAIR.
DTDB [9]. We create an evaluation set by randomly sam-
pling five sequences of length 16 from each test video re-
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sulting in between 90 and 385 test sequences depending on
the texture. Based on these sequences, the FVD, DTFVD,
LPIPS, and FID are computed. This evaluation procedure is
the same for each texture. We train one model for AL [6] as
well as for our approach on each texture. For diversity, we
again generate five future progressions for each sequence of
the evaluation set and use the same procedure described for
BAIR.

C.3. Dynamic Texture FVD (DTFVD)

In Sec. 4.3 of our main paper, we introduced a dedicated
FVD metric for the domain of dynamics textures, the Dy-
namic Texture Fréchet Video Distance (DTFVD). To this
end, we trained a network on DTDB [9] for the task of dy-
namic texture classification. The motivation behind intro-
ducing DTFVD is to provide an additional metric which is
sensitive to the types of appearances and dynamics encapsu-
lated by dynamic textures, rather than human action-related
motions, as captured by FVD. For the DTFVD network, we
use the same architecture as used for the FVD model, i.e., an
I3D network [27]. At convergence (cf. Fig. 3), the DTFVD
model achieved 81.7% training accuracy, while achieving
84.0% test accuracy, thus indicating that the model yields
well generalizing features capturing the appearance and dy-
namics in DTDB. A similar conclusion can be drawn by
looking at the confusion matrix in Fig. 2 computed for the
test set of DTDB, which shows a dominant diagonal struc-
ture. Note, we used dropout with a probability of p = 0.5 to
avoid overfitting, which explains why the classification per-
formance is higher on the test set than on the training set.
To evaluate sequences with lengths of 16 as well as 32 we
train two separate networks.
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Figure 2. Confusion matrix on the test set of DTDB [9] computed from our DTFVD backbone model.

Figure 3. Training and validation loss while optimizing our DTFVD backbone network on a sequence length of 32. Similar accuracy on
both dataset splits indicate a well-generalizing model.
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