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A. Appendix
A.l. Further Work

In our CSS setting, pixels of task 7" can belong to old
CY*=1 current C*, and future classes C**57, In this pa-
per we cover how to better handle old and current classes.
Further works should investigate how to exploit the already
present future information with Zeroshot [15, 14] as already
done in semantic segmentation [12, 1] and explored for con-
tinual classification [20, 8].

A.2. Algorithm view of Local POD

In Algo. 1, we summarize the algorithm for the proposed
Local POD. The algorithm consists in three functions. First,
Distillation, loops over all L layers onto which we
apply Local POD. Second, LocalPOD, computes the L2
distance (L.26) between POD embeddings of the current
(L.19) and old (L.20) models. It loops over S different
scales (L.14) and ® computes the POD embedding given
two features maps subsets (L.19-20) as defined in Eq. 1.
|| = denotes an in-place concatenation.

A.3. Reproducibility

Datasets: We evaluate our model on three datasets Pascal-
VOC [9], ADE20k [23], and Cityscapes [5]. VOC contains
20 classes, 10,582 training images, and 1,449 testing im-
ages. ADE20k has 150 classes, 20,210 training images, and
2,000 testing images. Cityscapes contains 2975 and 500 im-
ages for train and test, respectively. Those images represent
19 classes and were taken from 21 different cities. All abla-
tions and hyperparameters tuning were done on a validation
subset of the training set made of 20% of the images. For
all datasets, we resize the images to 512 x 512, with a center
crop. An additional random horizontal flip augmentation is
applied at training time.

Implementation details: For all experiments, we use a
Deeplab-V3 [4] architecture with a ResNet-101 [10] back-
bone pretrained on ImageNet [6], as in [2]. For all datasets,
we set a maximum threshold for the uncertainty measure
of Eq. 7to 7 = 1le — 3. We train our model for 30 and 60

Algorithm 1 Local POD algorithm

1: function DISTILLATION(f?, f*~1, z, )

2 loss <+ 0
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5: hf_l — flt_l(x)
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7 end for
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9: end function
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epochs per CSS step on Pascal VOC and ADE, respectively,
with an initial learning rate of 1e — 2 for the first CSS step,
and le—3 for all the following ones. We reduce the learning
rate exponentially with a decay rate of 9e — 1. We use SGD
optimizer with 9e — 1 Nesterov momentum. The Local POD
factor A is set to 1e — 2 and 5e — 4 for intermediate feature
maps and logits, respectively. Moreover, we multiply this
factor by the adaptive weighting 1/|C"**|/|c*| introduced by
[11] that increases the strength of the distillation the further
we are into the continual process. For all feature maps, Lo-



cal POD is applied before ReLU, with squared pixel values,
asin [21, 7]. We use 3 scales for Local POD: 1, 1/2, and 1/4,
as adding more scales experimentally brought diminishing
returns. We use a batch size of 24 distributed on two GPUs.
Contrary to many continual models, we don’t have access to
any task id in inference, therefore our setting/strategy has to
predict a class among the set of all seen classes —a realist
setting.

Classes ordering details: For all quantitative experiments
on Pascal-VOC 2012 and ADE20k, the same class ordering
was used across all evaluated models. For Pascal-VOC
2012 it corresponds to [1, 2, ..., 20] and ADE20k to
[1, 2, ..., 150] as defined in [2]. For continual-domain
cityscapes, the order of the domains/cities is the following:
aachen, bremen, darmstadt, erfurt, hanover,

krefeld, strasbourg, tubingen, weimar,
bochum, cologne, dusseldorf, hamburg, jena,
monchengladbach, stuttgart, ulm, zurich,

frankfurt, lindau, and munster.

In the main paper we showcased a boxplot featuring 20
different class orders for Pascal-VOC 2012 15-1. For the
sake of reproducibility, we provide details on these orders:

[1, 2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
[12. 9, 20, 7, 15, 8, 14, 16, 5, 19, 4, 1, 13, 2, 11, 17, 3, 6, 18, 5]

[9, 12, 13, 18, 2, 11, 15, 17, 10, 8, 4, 5, 20, 16, 6, 14, 19, 1, 7, 3]
[13, 19, 15, 17, 9, 8, 5, 20, 4, 3, 10, 11, 18, 16, 7, 12, 14, 6, 1, 2]
[15, 3, 2, 12, 14, 18, 20, 16, 11, 1, 19, 8, 10, 7, 17, 6, 5, 13, 9, 4]
[7, 13, 5, 11, 9, 2, 15, 12, 14, 3, 20, 1, 16, 4, 18, 8, 6, 10, 19, 17]
[12, 9, 19, 6, 4, 10, 5, 18, 14, 15, 16, 3, 8, 7, 11, 13, 2, 20, 17, 1]
[13, 10, 15, 8, 7, 19, 4, 3, 16, 12, 14, 11, 5, 20, 6, 2, 18, 9, 17, 1]
[3, 14, 13, 1, 2, 11, 15, 17, 7, 8, 4, 5, 9, 16, 19, 12, 6, 18, 10, 20]
[1, 14, 9, 5, 2, 15, 8, 20, 6, 16, 18, 7, 11, 10, 19, 3, 4, 17, 12, 13]
[16, 13, 1, 11, 12, 18, 6, 14, 5, 3, 7, 9, 20, 19, 15, 4, 2, 10, 8, 17]
[1o0, 7, 6, 19, 16, 8, 17, 1, 14, 4, 9, 3, 15, 11, 12, 2, 18, 20, 13, 5]
[7. 5. 3.9, 13, 12, 14, 19, 10, 2, 1, 4, 16, 8, 17, 15, 18, 6, 11, 20]
[18, 4, 14, 17, 12, 10, 7, 3, 9, 1, 8, 15, 6, 13, 2, 5, 11, 20, 16, 19]
[5, 4, 13, 18, 14, 10, 19, 15, 7, 9, 3, 2, 8, 16, 20, 1, 12, 11, 6, 17]
[9, 12, 13, 18, 7, 1, 15, 17, 10, 8, 4, 5, 20, 16, 6, 14, 19, 11, 2, 3]
[3. 14, 13, 18, 2, 11, 15, 17, 10, 8, 4, 5, 20, 16, 6, 12, 19, 1, 7, 9]
[7, 5,9, 1, 15, 18, 14, 3, 20, 10, 4, 19, 11, 17, 16, 12, 8, 6, 2, 13]
[3, 14, 6, 1, 2, 11, 12, 17, 7, 20, 4, 5, 9, 16, 19, 15, 13, 18, 10, 8]
[1, 2, 12, 14, 6, 19, 18, 17, 5, 20, 8, 4, 9, 16, 10, 3, 15, 13, 11, 7]

In the 15-1 setting, we first learn the first fifteen classes,
then increment the five remaining classes one by one. Note
that the special class background (0) is always learned
during the first task.

Hardware and Code: For each experiment, we used two
Titan Xp GPUs with 12 Go of VRAM each. The ini-
tial step ¢ = 1 for each setting is common to all mod-
els, therefore we re-use the weights trained on this step.
All models took less than 2 hours to train on Pascal-
VOC 2012 15-1, and less than 16 hours on ADE20k
100-10. We distributed the batch size equally on both
GPUs.  All models are implemented in PyTorch [18]
and runned with half-precision for efficiency reasons with
Nvdia’s APEX library (https://github.com/NVIDIA/apex)
using Ol optimization level. Our code base is based
on [2]’s code (https:/github.com/fcdl94/MiB) that we
modified to implement our strategy. It is available at
https://github.com/arthurdouillard/CVPR2021_PLOP.

Table 1: Ablations of PLOPon the Pascal-VOC 2012
dataset in 15-5 and 15-1. Scores are measured on a vali-
dation subset made of 20% of the training set.

15-5 (2 tasks)  15-1 (6 tasks)

Model all avg all avg
CE 13.85 4691 399  19.37
Pseudo 66.19 73.07 | 19.74 4448

Pseudo + Local POD 70.29 75.13 | 5041 64.95
vPseudo + Local POD || 71.43 75.70 | 52.31 65.71

A 4. Additional Experiments

Model ablation: Table 1 shows the construction of our
model component by component on Pascal-VOC 2012 in
15-5 and 15-1. For this experiment, we train our model on
80% of the training set and evaluate on the validation set
made of the remaining 20%. We report the mloU at the
final task (“all”) and the average of the mloU after each
task (“avg”). We start with a crude baseline made of solely
cross-entropy (CE). Pseudo-labeling by itself increases by a
large margin performance (eg. 3.99 to 19.74 for 15-1). Ap-
plying Local POD reduces drastically the forgetting leading
to a massive gain of performance (eg. 19.74 to 50.41 for
15-1). Finally our adaptive factor v based on the ratio of
accepted pseudo-labels over the number of background pix-
els further increases our overall results (eg. 50.41 to 52.31
for 15-1). The interest of v arises when PLOP faces hard
images where few pseudo-labels will be created due to an
overall high uncertainty. In such a case, current classes will
be over-represented, which can in turn lead to strong bias
towards new classes (i.e. the model will have a tendency
to predict one of the new classes for every pixel). The v
factor therefore decreases the overall classification loss on
such images, and empirical results confirm its effectiveness.
Pascal-VOC 2012 Disjoint: In the main paper, we re-
ported results on Pascal-VOC 2012 Overlap. For reasons
mentioned previously, Overlap is a more realist setting than
Disjoint. Nevertheless, for the sake of comparison, we also
provide results in Table 2 in the Disjoint setting. While
PLOP has similar performance to MiB in 15-5 (the differ-
ences are not significant), it significantly outperforms pre-
vious state-of-the-art methods in both 19-1 and 15-1.
Pascal-VOC 2012 Overlap with more baselines: In Ta-
ble 3, we report results on Pascal-VOC 2012 Overlap with
more baselines. In addition to the models presented in the
main paper, we add a naive Fine Tuning, two continual
models based on weights constraints (PI [22] and RW [3]),
and one continual model based on knowledge distillation
(LwF [16]). PLOP surpasses these methods in all CSS sce-
narios.


https://github.com/NVIDIA/apex
https://github.com/fcdl94/MiB
https://github.com/arthurdouillard/CVPR2021_PLOP

Table 2: Mean IoU on the Pascal-VOC 2012 dataset for different incremental class learning scenarios, all in Disjoint.
denotes results from Cermelli et al.[2].

19-1 (2 tasks)

15-5 (2 tasks)

15-1 (6 tasks)

Method 0-19 20 all avg 0-15 16-20 all avg 0-15 16-20 all avg
Fine Tuning’ 5.80 1230 6.20 1.10 33.60 9.20 0.20 1.80  0.60
PI' [22] 540 1410 5.90 1.30 34.10 9.50 0.00 1.80 040
EWCT [13] 2320 16.00 22.90 26.70 37.70 29.40 0.30  4.30 1.30
RW' 3] 19.40 1570 19.20 17.90 36.90 22.70 0.20 540 1.50
LwET [16] 53.00 9.10 50.80 58.40 37.40 53.10 0.80  3.60 1.50
LwE-MC' [19] | 63.00 1320 60.50 67.20 41.20 60.70 450 7.00 520
ILTT [17] 69.10 16.40 66.40 63.20 39.50 57.30 370 570 420
MiB' [2] 69.60 25.60 67.40 71.80 43.30 64.70 46.20 1290 37.90
PLOP 75.37 38.89 73.64 75.71 || 71.00 4282 64.29 72.05 | 57.86 13.67 46.48 62.67

Table 3: Mean IoU on the Pascal-VOC 2012 dataset for different incremental class learning scenarios, all in Overlap.
denotes results from Cermelli et al. [2], all other results are from us.

19-1 (2 tasks) 15-5 (2 tasks) 15-1 (6 tasks)

Method 0-19 20 all avg 0-15 16-20 all avg 0-15 16-20 all avg
Fine TuningJr 6.80 12.90 7.10 2.10  33.10 9.80 0.20 1.80 0.60

pIf [22] 7.50 14.00 7.80 1.60 33.30 9.50 0.00 1.80 0.50

EWC' [13] 2690 14.00 26.30 2430 3550 27.10 0.30 4.30 1.30

Rw [3] 2330 14.20 22.90 16.60 3490 21.20 0.00 5.20 1.30

LwF' [16] 51.20 8.50 49.10 58.90 36.60 53.30 1.00 3.90 1.80
LwF-MC' [19] | 64.40 13.30 61.90 58.10 35.00 52.30 6.40 8.40 6.90

LTt [17] 67.10 12.30 64.40 66.30 40.60 59.90 4.90 7.80 5.70

ILT [17] 67.75 10.88 65.05 71.23 || 67.08 39.23 60.45 70.37 8.75 7.99 8.56 40.16
MiB' [2] 70.20 22.10 67.80 75.50 4940 69.00 35.10 13.50 29.70

MiB [2] 7143 2359 69.15 73.28 || 76.37 49.97 70.08 75.12 || 3422 13.50 29.29 54.19
PLOP 7535 3735 7354 7547 || 7573 51.71 70.09 75.19 || 65.12 21.11 54.64 67.21
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