
Supplementary Materials for TransNAS-Bench-101: Improving Transferability
and Generalizability of Cross-Task Neural Architecture Search

Yawen Duan1,*, Xin Chen1,∗, Hang Xu2, Zewei Chen2, Xiaodan Liang3,†, Tong Zhang4, Zhenguo Li2
1 The University of Hong Kong, 2 Huawei Noah’s Ark Lab, 3 Sun Yat-sen University,

4 The Hong Kong University of Science and Technology

1. Detailed Information of TransNAS-Bench-
101 Benchmark Dataset

We provide the train/validation/test performance infor-
mation of each network at each epoch. One can also find
each network’s inference time, FLOPs, the total number of
parameters, and time elapsed during each training epoch
from the dataset. Each network’s inference time is mea-
sured on one Tesla V100 with one image of shape (3, 720,
1080). FLOPs are computed with one image of shape (3,
224, 224).

2. Training Details of Each Task

Object Classification. The labels provided by the
Taskonomy dataset [14] are activations generated by a
ResNet-152 model [3] pre-trained on ImageNet [2]. For ob-
ject classification, we train networks with the provided ac-
tivations. Since we use a subset of the Taskonomy dataset,
we identified 75 classes of objects that appear in our se-
lected subset for network training. The data augmentations
applied for this task are random flip, color jittering, and nor-
malization. For each network, the decoder part contains a
Global Average Pooling (GAP) layer and a linear layer. Re-
ferring to the settings of Taskonomy, each network is trained
for 25 epochs. Throughout the learning process, we use a
cosine annealing scheduler to gradually reduce the learning
rate from 0.1 to 0 for fast convergence. The optimizer for
parameters is SGD with the momentum factor 0.9, 0.0005
weight decay, and Nesterov momentum is enabled.

Scene Classification. Similar to Object Classifica-
tion, the Taskonomy dataset’s labels for scene classification
comes from an ImageNet pre-trained ResNet-152 model.
Our selected dataset contains 47 classes out of the original
365 classes. Referring to the settings of Taskonomy, each
network is trained for 25 epochs. The data augmentation,
decoder, optimizer, and learning rate scheduler settings are
the same as Object Classification tasks.

*Equal contribution. ({kmdaniel, cyn0531}@connect.hku.hk)
†Corresponding author. (xdliang328@gmail.com)

Room Layout. The goal of this task is to estimate and
align a 3D bounding box. In the Taskonomy dataset, such a
bounding box is defined by a 9-dimension vector. The net-
work is updated through computing the Mean Square Error
(MSE) loss with the provided labels. The data augmentation
methods used are color jittering and normalization. Follow-
ing the settings of Taskonomy, each network is trained for
25 epochs. The decoder, optimizer, and learning rate sched-
uler settings are the same as Object Classification and Scene
Classification.

Jigsaw Content Prediction. Jigsaw’s inclusion is in-
spired by a recent work [7] that explores the potential of
self-supervised tasks in architecture search. We follow [10]
to design the self-supervised task Jigsaw. The input image
is divided into 9 patches and shuffled according to one of
1000 preset permutations. The goal of this task is to clas-
sify which permutation is used. We use a Siamese network
to extract the feature map of each of the 9 image tiles and
concatenate them. We apply random flip, color jitter, and
random grayscale with a probability of 0.3 for data aug-
mentation. Referring to the settings of Taskonomy, each
network is trained for 10 epochs since Jigsaw tasks con-
verge very quickly. The decoder, optimizer, and learning
rate scheduler settings are the same as above.

Semantic Segmentation. The labels provided by the
Taskonomy dataset on semantic segmentation are generated
through a network pre-trained on the MSCOCO [6] dataset.
Our selected subset contains 17 semantic classes. We ap-
ply random flip, color jitter, and normalization for data aug-
mentation. For this task, we use the SGD optimizer with a
learning rate of 0.1, along with a cosine annealing sched-
uler. Referring to the settings in Taskonomy, each network
is trained for 30 epochs. The decoder, optimizer, and learn-
ing rate scheduler settings are the same as above.

Autoencoding. The generator networks in the Autoen-
coding task follow an encoder-decoder structure in Pix2Pix
[4], where the encoders are the searched backbones and
the decoders contain 14 layers of convolution and decon-
volution. We train the generator network using conditional
GAN [8] with a discriminator containing 7 convolution lay-

1



ers. We apply spectral normalization [9] to stabilize the dis-
criminator. The generator is trained with the L1 loss with
weight 0.99 and GAN loss with weight 0.01. We use struc-
tural similarity index measure (SSIM) [13] as the metric for
network performance evaluation. The data augmentations
applied for the generator are random flip and color jittering.
Both the generator and discriminator use Adam [5] opti-
mizer to stabilize the training with an initial learning rate of
0.0005. Referring to the settings in Taskonomy, each net-
work is trained for 30 epochs.

Surface Normal. We use the same generator, discrim-
inator, evaluation metric, and loss for surface normal and
autoencoding tasks. For surface normal, the optimizers for
both generator and discriminator are Adam with a learning
rate of 0.0001. Referring to the settings in Taskonomy, each
network is trained for 30 epochs.

3. Cross-task Training Results

We plot the network performance relations for all tasks
in Figure 1. Networks in the cell-level search space have a
much greater performance gap than networks in the macro-
level search space because certain cell designs can eas-
ily lead to poor network performance (e.g., choosing skip-
connection for all operations). The network performance in
most tasks is positively correlated.

4. Convergence Analysis of Trained Networks
To show the extent to which the ranking of networks in

our search space has stabilized, we plot the network rank-
ing correlation between consecutive epochs in Figure 2. We
query the network performance at each epoch, then calcu-
late the network ranking correlation between epoch t and
epoch t− 1. A higher value at epoch t means that this addi-
tional training epoch does not significantly change the rela-
tive advantage of each network in the search space. We plot
such correlation on all tasks in Figure 2. From the figures,
we can see that the network rankings in most tasks tend to
stabilize as they approach the end of the training. Despite
the relatively short training budget for each task, the net-
works have displayed good convergence results.

5. Algorithm Training Details
Because the field of transferrable NAS is new and

nascent, a limited number of transferrable architecture
search algorithms in the research community have been de-
veloped. We implemented four baseline algorithms using
TransNAS-Bench-101 and provide implementation details
of each algorithm below.

Regularized Evolution for Image Classifier Architec-
ture Search (REA). [11]. For both search spaces, the popu-
lation size and sample size are set to 10. We set the number
of cycles as 40. Hence, a total of 50 architectures would be
selected. The best validation accuracy throughout the eval-
uation of a network would be chosen as the fitness. For the

(a) Cell-level (b) Macro-level

Figure 1: Performance of cell-level and macro-level networks across all seven tasks.

2



0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n 
-- 

va
lid

 se
t class_object

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

class_scene

2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

jigsaw

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

room_layout

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

autoencoder

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

normal

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

segmentsemantic

0 5 10 15 20 25
n-th vs. (n-1)-th Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n 
-- 

te
st

 se
t

0 5 10 15 20 25
n-th vs. (n-1)-th Epoch

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8
n-th vs. (n-1)-th Epoch

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25
n-th vs. (n-1)-th Epoch

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30
n-th vs. (n-1)-th Epoch

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30
n-th vs. (n-1)-th Epoch

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30
n-th vs. (n-1)-th Epoch

0.0

0.2

0.4

0.6

0.8

1.0

(a) Cell-level search space

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n 
-- 

va
lid

 se
t class_object

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

class_scene

2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

jigsaw

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

room_layout

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

autoencoder

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

normal

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

segmentsemantic

0 5 10 15 20 25
n-th vs. (n-1)-th Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n 
-- 

te
st

 se
t

0 5 10 15 20 25
n-th vs. (n-1)-th Epoch

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8
n-th vs. (n-1)-th Epoch

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25
n-th vs. (n-1)-th Epoch

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30
n-th vs. (n-1)-th Epoch

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30
n-th vs. (n-1)-th Epoch

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30
n-th vs. (n-1)-th Epoch

0.0

0.2

0.4

0.6

0.8

1.0

(b) Macro-level search space

Figure 2: Figure 2(a)-2(b) displays the network rank correlation between the n-th epoch and (n−1)-th epoch on the cell-level
search space and the macro-level search space. The first row in both subfigures are correlations on the validation set, and the
second rows are correlations on the test set.

macro-level search space, the mutation operation would be
randomly adding, deleting, or changing a module type.

Proximal Policy Optimization (PPO). [12]. For both
search spaces, we can formulate the NAS problem as a se-
quential decision problem, and the reinforcement learning
algorithm PPO aims to select each attribute choice to form
a network. We set the learning rate as 0.01, and it decays
by 0.999 for every 15 steps. The optimizer is Adam. We set
the clipping parameter ε as 0.2, memory size as 100, dis-
count γ as 0.99, GAE parameter λ as 0.95, value function
coefficient as 1, and entropy coefficient as 0.01. For PPO-
transfer, we first pre-train the policy by applying the policy
to search on the lowest cost tasks, jigsaw, then transfer to
target tasks.

Context-based Meta Reinforcement Learning for
Transferrable Architecture Search (CATCH). [1].
CATCH uses PPO as its controller to sample networks. It
also uses a network evaluator to predict the network perfor-
mance and uses a context encoder to learn a task-specific

embedding to guide the search. CATCH incorporated meta
reinforcement learning by first meta-training the policy on
various tasks, such as jigsaw, classification tasks, and then
adapt the meta-trained policy to a target task. We set the
hyperparameters for the controller the same as those of
PPO. For the context encoder, we set its learning rate as
0.0005, KL Divergence weight as 0.1. For the evaluator,
we set its learning rate as 0.0005, initial epsilon ε as 1,
and it decays by 0.025 for every 4 steps to encourage
exploration. In the adaptation phase, the initial epsilon for
the evaluator is set to 0.5 and decays by 0.025 for every 2
steps to encourage exploitation.

3



References
[1] Xin Chen, Yawen Duan, Zewei Chen, Hang Xu, Zihao

Chen, Xiaodan Liang, Tong Zhang, and Zhenguo Li. Catch:
Context-based meta reinforcement learning for transferrable
architecture search. arXiv preprint arXiv:2007.09380, 2020.
3

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 1

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1

[4] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1125–1134,
2017. 1

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 2

[6] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 1

[7] Chenxi Liu, Piotr Dollár, Kaiming He, Ross Girshick, Alan
Yuille, and Saining Xie. Are labels necessary for neural ar-
chitecture search? arXiv preprint arXiv:2003.12056, 2020.
1

[8] Mehdi Mirza and Simon Osindero. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784, 2014. 1

[9] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. arXiv preprint arXiv:1802.05957, 2018.
2

[10] Mehdi Noroozi and Paolo Favaro. Unsupervised learning
of visual representations by solving jigsaw puzzles. In
European Conference on Computer Vision, pages 69–84.
Springer, 2016. 1

[11] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In Proceedings of the aaai conference on artificial
intelligence, volume 33, pages 4780–4789, 2019. 2

[12] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347, 2017. 3

[13] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 2

[14] Amir R Zamir, Alexander Sax, William Shen, Leonidas J
Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy:
Disentangling task transfer learning. In CVPR, pages 3712–
3722, 2018. 1

4


