
Adaptive Methods for Real-World Domain Generalization : Appendix

Abhimanyu Dubey
MIT

dubeya@mit.edu

Vignesh Ramanathan
Facebook AI

vigneshr@fb.com

Alex Pentland
MIT

pentland@mit.edu

Dhruv Mahajan
Facebook AI

dhruvm@fb.com

A. Theory
A.1. Motivation

The traditional objective of the domain generalization problem is to learn a function f∗ : X → Y that minimizes the
empirical risk over P, i.e., for some class of functions F and loss function ` : R× Y → R+,

f∗ = arg min
f∈F

ED∼P
[
E(x,y)∼D [`(f(x), y)]

]
. (1)

We denote the RHS in the above equation for any f ∈ F as the expected risk L(f). Correspondingly, the optimal ERM
solution f̂ on the training data can be given as follows.

f̂ = arg min
f∈F

1

nN

 ∑
D̂∈Strn

∑
(x,y)∈D

`(f(x), y)

 . (2)

We denote the RHS in the above equation for any f ∈ F as the empirical risk L̂(f). Existing invariant approaches [1] build
on exploiting the traditional decomposition of the empirical risk as a function of the variance of f across P.

∣∣∣L(f)− L̂(f)
∣∣∣

generalization gap

4 O
(

VarD∈Strn(f)

N

) 1
2

︸ ︷︷ ︸
inter-domain variance

. (3)

The particular approximation of the variance penalty (term 2 of the RHS) leads to the class of invariant domain generalization
algorithms. In contrast, in this paper we focus on controlling the LHS directly by selecting a stronger function class F over
the product space D × X (instead of X)1. The key modeling choice we make is to learn a function F : D × X → Y that
predicts ŷ = F (DX ,x) for any (x, y) ∈ D, where DX is the marginal of X under D.

A.2. Background

Let X ⊂ Rd be a compact input space, Y ∈ [−1, 1] to be the output space, and let PX×Y denote the set of all probability
distributions over the measurable space (X ×Y,Σ), where Σ is the σ-algebra of subsets of X ×Y . Additionally, we assume
there exists sets of probability distributions PX and PY|X such that for any sample PXY ∈ PX×Y there exist samples
PX ∈ PX and PY |X ∈ PY|X such that PXY = PX • PY |X (this characterization is applicable under suitable assumptions,
see Sec. 3 of [2]). We assume that there exists a measure µ over PX×Y and each domain D is an i.i.d. sample from PX×Y ,
according to µ. The training set is generated as follows. We sample N realizations P (1)

XY , ..., P
(n)
XY from PX×Y according to

µ. For each domain, we then are provided Di, which is a set of ni i.i.d. samples (x
(i)
j , y

(i)
j)j∈[ni] sampled i.i.d. from P

(i)
XY .

Each test domain is sampled similarly to the training domain, where we first sample a probability distribution PTXY ∼ µ,
and are then provided nT samples (xTj , y

T
j)j∈[nT] from PTXY that forms a test domain. The key modeling assumption we

make is to learn a decision function f : PX × X → R that predicts ŷ = f(P̂X ,x) for any (x, y) ∈ D and P̂X is the

1While we do not investigate this in detail, our approach is compatible with invariant approaches, as we consider separate aspects of the problem.

1

associated empirical distribution of D. For any loss function ` : R × Y → R+, then the empirical loss on any domain Di is
1
ni

∑
(x,y)∈Di `(f(P̂

(i)
X ,x), y). We can define the average generalization error over N test domains with n samples as,

L̂N (f, n) :=
1

N

∑
i∈[N]

 1

n

∑
(x,y)∈Di

`(f(P̂
(i)
X ,x), y)

 . (4)

In the limit as the number of available domains N →∞, we obtain the expected n-sample generalization error as,

L(f, n) := EPXY ∼µ,D∼(PXY)⊗n

[
1

n

n∑
i=1

`(f(P̂X ,xi), yi)

]
. (5)

The modeling assumption of f being a function of the empirical distribution P̂X introduces the primary difference between
the typical notion of training error. As n → ∞, we see that the empirical approximation P̂X → PX . This provides us with
a true generalization error, in the limit of n→∞ (i.e., we also have complete knowledge of PX),

L(f,∞) := EPXY ∼µ,(x,y)∼PXY [`(f(PX ,x), y)] . (6)

An approach to this problem was proposed in Blanchard et al. [2] that utilizes product kernels. The authors consider a kernel
κ over the product space PX ×X with associated RKHSHκ. They then select the function fλ such that

fλ = arg min
f∈Hκ

1

N

N∑
i=1

1

ni

ni∑
j=1

`(f(P̂
(i)
X ,xij), yij) + λ‖f‖2Hκ . (7)

The kernel κ is specified as a Lipschitz kernel on PX ×X :

κ((PX ,x), (PX′ ,x′)) = fκ(kP (PX , PX′ , kX(x,x′)). (8)

Where KP and KX are kernels defined over PX and X respectively, and fκ is Lipschitz in both arguments, with constants
LP and LX with respect to the first and second argument respectively. Moreover, KP is defined with the use of yet another
kernel K and feature extractor φ:

kP (PX , PX′) = K(φ(PX), φ(PX′)). (9)

Here, K is a necessarily non-linear kernel and φ is the kernel mean embedding of PX in the RKHS of a distinct kernel k′X ,
i.e.,

PX → φ(PX) :=

∫
X
k′X(x, ·)dPX(x). (10)

A.3. Kernel Assumptions

To obtain bounds on the generalization error, the kernels kX , k′X and K have the assumptions of boundedness, i.e.,
kX(·, ·) ≤ B2

k, k′X(·, ·) ≤ B2
k′ and K(·, ·) ≤ B2

K. Moreover, φ satisfies a Hölder condition of order α ∈ (0, 1] with
constant LK in the RKHS ball of k′X , i.e., ∀x,x′ ∈ B(Bk′), ‖φ(x)− φ(x′)‖ ≤ LK‖x− x′‖α.

A.4. Consistency Bound (Theorem 1 of the Main Paper)

We first state the formal theorem.

Theorem 1. Let D be a distribution over X , and D̂ be the empirical distribution formed by n samples from X drawn
according to D, and ‖ΦD(x)‖ ≤ Bk′ ,Ex∼D[‖ΦD(x)‖22] ≤ σ2. Then, we have with probability at least 1− δ over the draw
of the samples, ∥∥∥µ(D)− µ(D̂)

∥∥∥
∞
≤
√

8σ2 log(1/δ)

n
− 1

4
.

2

Proof. We first note that µ(D) = Ex∼D[Φ(x)], and each Φ(x) is a dD−dimensional random vector. Furthermore, since the
kernel k′X is bounded, we have that ‖Φ(x)‖ ≤ B2

k′ for any x ∈ X . Next, we present a vector-valued Bernstein inequality.

Lemma 1 (Vector-valued Bernstein bound []). Let x1,x2, ...,xn be n finite-dimensional vectors such that E[xi] = 0, ‖xi‖ ≤
µ and E[‖xi‖2] ≤ σ2 for each i ∈ [n]. Then, for 0 < ε < σ2/µ,

P

(∥∥∥∥∥ 1

n

n∑
i=1

xi

∥∥∥∥∥ ≥ ε
)
≤ exp

(
−n · ε

2

8σ2
− 1

4

)
.

Now, we have, by the above result, for any 0 < ε < σ2/Bk′

P
(∥∥∥µ(D)− µ(D̂)

∥∥∥ ≥ ε) ≤ exp

(
−n · ε

2

8σ2
− 1

4

)
. (11)

This is obtained by noting that µ(D̂) = 1
n

∑n
i=1 Φ(xi) and that µ(D) = Ex∼D[Φ(x)]. Setting the RHS as δ and rearranging

terms gives us the final result.

A.5. Generalization Bound (Theorem 2 of Main Paper)

Theorem 2 (Uniform Risk Bound). Let (P
(i)
XY)i∈[N] beN training domains sampled i.i.d. from µ, and let Si = (xij , yij)j∈[n]

be n-sample training sets for each domain. For any loss function ` that is bounded by B` and Lipschitz with constant L`, we
have, with probability at least 1− δ for any R:

sup
f∈Bκ(R)

|L(f,∞)− L̂N (f, n)| ≤ O

(
R

(
log(N/δ)

n

α
2

+

√
log(1/δ)

N

))
.

Proof. We begin by decomposing the LHS.

sup
f∈Bκ(R)

|L(f,∞)− L̂N (f, n)| ≤ sup
f∈Bκ(R)

|L(f,∞)− L̂N (f,∞)|︸ ︷︷ ︸
A

+ sup
f∈Bκ(R)

|L̂N (f,∞)− L̂N (f, n)|︸ ︷︷ ︸
B

. (12)

We first control B. Note that the loss function is Lipschitz in terms of f , and therefore we have,

sup
f∈Bκ(R)

|L̂N (f,∞)− L̂N (f, n)| ≤ L`
nN
· sup
f∈Bκ(R)

∣∣∣∣∣∣
N∑
i=1

n∑
j=1

f(xij ,µ(Di))− f(xij ,µ(D̂i))

∣∣∣∣∣∣ (13)

≤ L`
nN

N∑
i=1

n∑
j=1

sup
f∈Bκ(R)

∣∣∣f(xij ,µ(Di))− f(xij ,µ(D̂i))
∣∣∣ (14)

≤ L`
N

N∑
i=1

sup
f∈Bκ(R)

∣∣∣f(·,µ(Di))− f(·,µ(D̂i))
∣∣∣ . (15)

We will now bound sup
f∈Bκ(R)

∣∣∣f(·,µ(Di))− f(·,µ(D̂i))
∣∣∣. Note that by the reproducing property,

sup
f∈Bκ(R)

∣∣∣f(x,µ(Di))− f(x,µ(D̂i))
∣∣∣ ≤ ‖f‖κ sup

∣∣∣fκ(kP (µ(D), ·), kX(x, ·))− fκ(kP (µ(D̂), ·), kX(x, ·))
∣∣∣ (16)

≤ R · sup
∣∣∣fκ(kP (µ(D), ·), kX(x, ·))− fκ(kP (µ(D̂), ·), kX(x, ·))

∣∣∣
(Since ‖f‖κ ≤ R)

≤ RLP · sup
∣∣∣K(µ(D), ·)− K(µ(D̂), ·)

∣∣∣ (Since fκ is Lipschitz)

≤ RLP · sup
∥∥∥ΦK(µ(D))− ΦK(µ(D̂))

∥∥∥ (Triangle inequality)

≤ RLP · sup
∥∥∥µ(D)− µ(D̂)

∥∥∥α
∞

(α-Hölder assumption)

3

By Theorem 1, we can bound this term as well. Putting the results together and taking a union bound over all N domains,
we have with probability at least 1− δ,

sup
f∈Bκ(R)

|L̂N (f,∞)− L̂N (f, n)| ≤ L`LP
N

(
R

8σ2 log(N/δ)

n
− 1

4

)α/2
(17)

Control of the term B is done identically as Section 3.2 of the supplementary material in Blanchard et al. [2], with one key
difference: in the control of term (IIa) (in their notation), we use the Lipschitz kernel instead of the product kernel, giving a
constant

√
LP (instead of Bκ) in the bound of IIa. Combining the two steps gives the final stated result.

Our proof admits identical dependences as Blanchard et al. [2], but the analysis differs in two key aspects: first, we use
a Bernstein concentration to obtain a result in terms of the variance (Theorem 1 and term A of Theorem 2), which can
potentially be tighter if the variance is low (see main paper and consistency). Next, we extend their result from product
kernels to a general form of Lipschitz kernels, more suitable for deep-learning systems.

B. Two-Step Training Procedure

Trained Domain
Embedding Network

Domain Prototypes

Image
Embedding Network

MLP

(B) Domain Prototype Extraction

(C) Adaptive Training and Inference Pipeline(A) Domain Prototype Training

Cross Entropy

concatenated embeddings

split each batch into two

Prototypical Loss

Batch-wise Evaluation Samples

Batch-wise Domain Embedding

compute average

Domain Embedding Network

sample a batch each from all domains

Figure 1: Illustrative figure for the two-step training process.

In our approach, we directly train a domain-aware neural network g : Rd × RdD → [K]. For any input image x
from domain D, g takes in the augmented input (x, φ(D;θ∗)), which is composed of the input x and the corresponding
domain prototype φ(D;θ∗) obtained from the previous section, and predicts the class label ŷ as output. The neural network
architecture is described in Figure 1.
g is a composition of an image feature extractor (ΦX) whose output is concatenated with the domain prototype Φ(D)

and fed into a series of non-linear layers (K) to produce the final output. The domain-aware neural network parameters are
denoted by ω. f therefore is parameterized by both ω and θ and is described as f(x,D;ω,θ) = g(x, φ(D;θ);ω).

Remark 1. It is possible to decouple the prototype construction and inference procedures in the test phase (since we can use
unsupervised samples from a domain obtained a priori to construct prototypes). In this setting, we can use a distinct set of
np points to construct the domain prototype for each test domain. We can see directly from Theorem 1 that for any Lipschitz
loss function, the maximum disparity between classification using the optimal prototype (i.e., formed with knowledge of D)
and the np-sample approximation is (with high probability) at most Õ

(
n−αp + (σP /np)

−α/2), which is small when σP is
small, i.e., the prototype is consistent.

C. Hyperparameters
C.1. Small-Scale Hyperparameters

We follow the setup for small-scale datasets that is identical to Gulrajani and Lopez-Paz [4] and use their default values,
and the search distribution for each hyperparameter via random search. These values are summarized in Table 1.

4

Condition Parameter Default value Random distribution

Basic hyperparameters
learning rate 0.00005 10Uniform(−5,−3.5)

batch size 32 2Uniform(3,5.5)

weight decay 0 10Uniform(−6,−2)

C-DANN

lambda 1.0 10Uniform(−2,2)

generator learning rate 0.00005 10Uniform(−5,−3.5)

generator weight decay 0 10Uniform(−6,−2)

discriminator learning rate 0.00005 10Uniform(−5,−3.5)

discriminator weight decay 0 10Uniform(−6,−2)

discriminator steps 1 2Uniform(0,3)

gradient penalty 0 10Uniform(−2,1)

adam β1 0.5 RandomChoice([0, 0.5])

IRM lambda 100 10Uniform(−1,5)

iterations of penalty annealing 500 10Uniform(0,4)

Mixup alpha 0.2 10Uniform(0,4)

DRO eta 0.01 10Uniform(−1,1)

MMD gamma 1 10Uniform(−1,1)

MLDG beta 1 10Uniform(−1,1)

all dropout 0 RandomChoice([0, 0.1, 0.5])

Table 1: Hyperparameters for small-scale experiments.

C.1.1 Prototypical Network

In addition to these, the prototypical network optimal hyperparameters are as follows: We use a ResNet-50 architecture
initialized with ILSVRC12 [3] weights, available in the PyTorch Model Zoo. We run 1000 iterations of prototypical training
with Nt = 4 domains sampled each batch, and a batch size of 32 per domain. The learning rate is 1e − 6 and weight decay
is 1e− 5 with 50% of the points in each batch used for classification and the rest for creating the prototype.

C.1.2 DA-CORAL and DA-MMD

The DA-CORAL and DA-MMD architectures are identical to DA-ERM. We additionally add the MMD and CORAL regu-
larizers with γ = 1 for each in the final penultimate layer of the network (after the bottleneck, before the logits).

C.2. Large-Scale Hyperparameters

C.2.1 LT-ImageNet

DA-ERM Prototype Training. We did a small grid-search for learning rate (in the set 1e− 1, 1e− 2, 1e− 3, 1e− 4, 1e− 5)
and the final parameters are: learning rate of 0.001 and weight decay of 1e − 5. We train with a batch size of 100 (per
domain), over 8 GPUs and run the prototypical algorithm for 1300 iterations. We use 50% of the points for the support set
per batch per domain and the remaining as test points.

Main Training for all methods. For all methods (MMD, CORAL, ERM, DA-ERM) we perform main training for 5
epochs of the training data with a batch-size of 100 (per domain), learning rate of 0.005 and weight-decay of 1e − 5 over a
system of 8 GPUs. We additionally tune the value of the loss weight in the range (0, 5) for MMD and CORAL. The reported
results are with the loss weight (γ = 1).

5

C.2.2 Geo-YFCC

DA-ERM Prototype Training. We did a small grid-search for learning rate (in the set 1e − 2, 1e − 3, 1e − 4, 1e − 5),
weight-decay (in the set 1e − 4, 1e − 5, 1e − 6), and the final parameters are: learning rate of 2e − 2 and weight decay of
1e− 5. We train with a batch size of 80 (per domain), over 48 GPUs and run the prototypical algorithm for 1300 iterations.
We use 80% of the points for the support set per batch per domain and the remaining as test points.

Main Training for all methods. We perform a grid search on number of epochs of training data in the range (3, 6, 12, 25)
and found that all methods performed best (overfit the least to training domains) at 6 epochs. For all methods (MMD,
CORAL, ERM, DA-ERM) we perform main training with a batch-size of 80 (per domain), learning rate of 0.04 and weight-
decay of 1e− 5 over a system of 64 GPUs. We additionally tune the value of the loss weight in the range (0, 1.5) for MMD
and CORAL. The reported results are with the loss weight (γ = 1).

D. Consistency Experiment

Dataset Accuracy on Validation Set, top1/top5
50 100 250 500 1000 2000

DG - ImageNet – 56.0/80.1 56.1/80.2 56.2/80.2 – –
Geo - YFCC 23.7/49.0 23.3/49.1 23.4/49.3 23.6/49.3 23.4/49.1 23.4/49.2

Table 2: Number of points used to construct prototype.

Table 2 shows the effect of varying the number of data points used to consruct the domain prototypes for LT-ImageNet
and Geo-YFCC datasets. We observe that performance remains similar till 50 points. This is desirable as in many settings
we do not have access to many samples from new domains.

References
[1] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman Vaughan. A theory of learning

from different domains. Machine learning, 79(1-2):151–175, 2010. 1
[2] Gilles Blanchard, Gyemin Lee, and Clayton Scott. Generalizing from several related classification tasks to a new unlabeled sample.

In Advances in neural information processing systems, pages 2178–2186, 2011. 1, 2, 4
[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009

IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009. 5
[4] Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. arXiv preprint arXiv:2007.01434, 2020. 4

6

