
1. Supplementary Material
In this appendix, we study in more detail the relation-

ship between the choice for N, M, and S parameters of Sec-
tion 3.2 that control the mask generation process and the
resulting model size, mask correlation and models’ diver-
sity.

1.1. Expected models size

We first provide a formal derivation for the expected size
of a generated model given the N,M,S parameters. Let us
consider N vectors of size M×S filled with zeros and then in
each of those vectors we randomly set M of these elements
to be 1. Let ζij be a random variable that represents whether
or not j-th position in i-th vector is equal to one.

P(ζij = 1) =
M

M × S
=

1

S
. (1)

This arises from the fact that there are
(M×S

M

)
ways to chose

M positions from M×S places and only
(M×S−1

M−1

)
such con-

figurations where j-th position is fixed to be one, therefore

P(ζij = 1) =

(
M × S − 1

M − 1

)
·
(

M × S
M

)−1

=
M

M × S
=

1

S

(2)

Let εj = [
∑N

i=1 ζij > 0] be the random variable repre-
senting whether at least one 1 appears in the j-th position
among all generated vectors. Given that P(ζij = 0) = 1− 1

S
and P(X) = 1−P(X), then probability of εj can be written
as

P(εj = 1) = 1− (1− 1/S)N . (3)

To compute the expected model size, we compute the ex-
pectation of εj sum, since effectively it represents expected
number of features that one will acquire after a trimming
procedure:

Size(N,M,S) = E
M×S∑
i=1

εj =

M×S∑
i=1

Eεj

= M × S
[
1− (1− 1/S)N] (4)

1.2. Average IoU

We now justify our 1
2S−1 approximation for the average

mask IoU. Let us consider two vectors produced by our
mask generation algorithm. As above, let ζ1j and ζ2j be
random variables that represent the value at the j-th posi-
tion in the first and second masks, respectively. Starting
from the standard definition of the IoU, we estimate the av-
erage intersection I of two such masks as the number of

common ones

EI = E
M×S∑
j=1

ζ1j · ζ2j =
M×S∑
j=1

Eζ1j · Eζ2j

= M × S · 1

S2 =
M
S
. (5)

Given two masks with M ones each and intersection I , their
IoU is I

2M−I . Therefore, a simple approximation for ex-
pected IoU is

E [IoU] = E
[

I

2M − I

]
≈ EI

2M − EI

=
M/S

2M − M/S
=

1

2S − 1

(6)

In Fig. 1, we plot this value as a function of S along with
empirical values and the agreement is excellent.
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Figure 1. Empirical and Analytical IoU. The plot represents how
close are real IoU of generated masks and analytical approxima-
tion for it. In wide range of S values we demonstrate a close match
of considered quantities.

1.3. Diversity analysis

It is a known that less correlated ensembles of models
deliver better performance, produce more accurate predic-
tions [3, 5, 2], and demonstrate lower calibration error [4].
Hence, a strength of Masksembles is that it provides the
ability to control how correlated models within Masksem-
bles are by adjusting the N, M, and S parameters.

We now perform a diversity analysis of Masksembles
models using the metric of [1]. It involves comparing two
different models trained on the same data in terms of how
different their predictions are. Measuring fraction of the
test data points on which predictions of models disagree,
the diversity, and normalizing it by the models error rate,
we write

Diversity =
fraction of disagreed labels

1.0− accuracy
(7)

Plotting this diversity against accuracy allows us to look
at our models from a bias-variance trade-off perspective.
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Figure 2. Diversity vs Accuracy trade-off for Cifar10. Every
point is associated with a pair of compared models. Larger diver-
sity values correspond to less correlated models. Green and Red
dashed lines represent the worst and the best theoretically possible
diversity for a fixed accuracy.

Since we want our models to be less correlated—larger di-
versity—and at the same time to be accurate, the upper-right
corner of Fig. 2 is where the best models should be.

For this experiments we used trained single model; sev-
eral Masksembles models with N = 4, fixed M to have the
same capacity as the single one and varying S in [2, 3, 4, 5];
ensembles model with 4 members. Fig. 2 depicts the results
on CIFAR10 dataset. Ensembles have the largest diversity
but Masksembles gives us the ability to achieve very similar
results by controlling its parameters. The single model has
0 diversity by the definition.

1.4. Calibration Plots

Since Expected Calibration Error (ECE) provides only
limited and aggregated information about model’s calibra-
tion therefore in this section we present full calibration
plots for experiments performed on CIFAR and ImageNet
datasets in experiments sections.
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Figure 3. Calibration plots. Calibration results for CIFAR10
(left) and ImageNet (right) test sets. Perfect calibration corre-
sponds to y = x curve. Masksembles exhibit a more ensembles-
like behavior for lower values of masks overlap.

For both datasets, the calibration plots support our claim
that lower model correlation yields better calibration. Fur-
thermore, reducing masks overlap for Masksembles enables
us to match Ensembles behavior very closely.
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