Supplementary Material for
DeepVideoMVS: Multi-View Stereo on Video
with Recurrent Spatio-Temporal Fusion

A. Training Details

We use an image size of 256x256 with cropping and scal-
ing. Since the original image resolution is 640x480 in the
ScanNet dataset, we crop the image from the left and right
equally to acquire an image size of 480x480, then downscale
to 256x256. During training, we compute the cost volume
for a reference frame using one measurement frame.

Pair Network Training. We use the Adam optimizer with
£1=0.9 and B2 = 0.999, and a constant learning rate of
le—4. The pair network is trained with a mini-batch size
of 14 for 600K iterations in total. We load the pretrained
weights for the MnasNet layers, which are supplied by Py-
Torch, and freeze these layers for the first 200K iterations.
We predict depth maps for both of the input images at each
forward pass, i.e., after the shared feature extraction mod-
ules, we consider a given feature map once as the reference
feature map and once as the measurement feature map.

Fusion Network Training. The fusion network is trained
with a subsequence length of 8 and a mini-batch size of 4.
As the initial weights for the feature extraction layers, the
feature pyramid network (FPN) and the encoder, we use the
checkpoint saved at 100K iterations of the pair network train-
ing. We freeze the parameters for these modules and train
only the ConvLSTM cell and the decoder for 25K iterations,
which are randomly initialized. Next, we add the FPN and
the encoder weights among the trainable parameters and train
for another 25K iterations. Then, we unfreeze the MnasNet
layers and train the whole network up to 1000K iterations,
while validating and saving checkpoints frequently for early
stopping. During these iterations, we use the groundtruth
depth map to warp the hidden state. Finally, we load the
best checkpoint and finetune only the cell for another 25K
iterations with a learning rate of 5e—5 while warping the
hidden states with the predicted depth maps. We do not allow
the gradients to flow through the depth map prediction that
warps the hidden state. As our attempts suggest, allowing
this gradient flow introduces a complex causal relationship
among the predictions and the gradients explode when the
training experiences a large loss in an arbitrary subsequence.

Data Augmentation. We use several data augmentation
techniques. These are applying slight changes to the color
space of the images, randomly reversing the order of the
frames in a subsequence, and randomly changing the geo-
metric scale of the subsequences. Also, we apply random
horizontal flips to the cost volume and the extracted features

during pair network training to increase the diversity of the
cases that the encoder and the decoder experience. For the
geometric scale augmentation, we choose the default sam-
pling interval of the scaling factor as [0.666, 1.5]. When the
training pipeline requests a new subsequence from the data
pipeline, we adjust these bounds according to the minimum
and the maximum depth measurements in the subsequence.
This ensures that even after applying a random geometric
scaling, the cost volume can still contain a correct local
extremum for every pixel. The sampled scale factor is multi-
plied with the groundtruth depth values and the translation
columns of the camera poses in an entire subsequence.

B. Evaluation Metrics

For a predicted depth map, the metrics are calculated as:

1 X -
i. abs = — d; —d;
i. abs Nz;| |

1Y |d; —d;
ii. abs-rel = N ;::1 | a |
1 N1 1
i abssiny = Fo1
iii. abs-inv Ni; 7 i
iv. inlier ratio = ~ %11 d j < 125%d
iv. inlier ratio = — i . i
N A& 125

where d; and d; denote the predicted depth value and the
groundtruth depth value for a given pixel ¢ that has a valid
depth measurement, N is the number of pixels that have
valid depth measurements, and 1 is the indicator function.

C. Inference Time and Memory Consumption

The average duration of a single forward pass and the GPU
memory consumption for the methods in comparison are
given in Tab. 5. The measurements are taken on a worksta-
tion with NVIDIA GTX 1080Ti GPU. We do not consider
the time spent by the CPU or the transfer time of the data
to/from the GPU. We fix the input image sizes for all meth-
ods to 320 x 256, start recording the times after the first
100 forward passes (warm start), and always start a method
when the CPU and GPU temperature are below 40°C. We
run all the methods with a mini-batch size of 1, i.e., the
simulation of predicting a single depth map for the current
time step. For DELTAS, we replace the PyTorch’s singular
value decomposition with a custom function that the authors

suggest to increase the inference speed. However, note that
we could not reproduce the inference times that the authors
of DELTAS report as around 90 milliseconds on NVIDIA
Titan RTX GPU.

Time(ms)} | FPS® Memory(MB) .

MVDepth 45.84 ~21.8 1081
GPMVS 47.81 ~20.9 1083
DPSNet 172.62 ~5.8 863
NRGBD 192.43 ~5.2 1485
*DELTAS 374.78 ~2.7 2371
Ours (Pair) 29.72 ~33.7 795
Ours (Fusion) 37.14 ~26.9 1061

Table 5: Mean inference time and GPU memory consumption of
all methods. Inference time is averaged over 300 forward passes.
All methods are run with an image size of 320 x 256 and use one
measurement frame, except Neural RGBD that requires minimum
two measurement frames. * the authors report faster times.

D. Evaluation Set Details

We use four real and one synthetic dataset to evaluate the
methods. All of the datasets provide RGB-D videos at
640 x 480 depth image resolution and 3D camera poses.
The selected sequences are as follows:

e ScanNet [11]: All 100 official test sequences, i.e.,
scene0707 to scene0806.

e 7-Scenes [16]: chess-01, chess-02, fire-01, fire-02,
head-02, office-01, office-03, pumpkin-03, pumpkin-06,
redkitchen-01, redkitchen-02, stairs-02, stairs-06.

e RGB-D Scenes V2 [28]: scene-01, scene-02, scene-05,
scene-06, scene-09, scene-10, scene-13, and scene-14.

TUM RGB-D SLAM [47]: frl-desk, frl-plant, frl-
room, frl-teddy, fr2-desk, fr2-dishes, fr2-large-no-loop,
fr3-cabinet, fr3-long-office-household, fr3-nostructure-
notexture-far, fr3-nostructure-texture-far, fr3-structure-
notexture-far, fr3-structure-texture-far.

Augmented ICL-NUIM [18,48]: livingroom1, livin-
groom?2, officel, office2.

E. Additional Ablation Studies

In this section, we provide additional ablation studies. We
present the results acquired on our validation split of the
ScanNet dataset. These experiments were conducted at dif-
ferent stages of this work. Each subsection is self-contained,
i.e. the models in a given subsection are trained with identi-
cal training and data pipelines. However, the results cannot
be meaningfully compared in between subsections, since
they may employ different training strategies.

Configuration-1
ELU activation, no normalization

ir = o(wy * Xy + wp « Hy_q)

f; = o(Wyyp * Xy + wpy « Hy_1)

0 = 0(Wgo * Xy + Who * Hy 1)

g, = ELU(W 4 x X; + Wy x H; 1)
C=£0C1+i10g

H, = o, ® ELU(C,)

Configuration-2
tanh activation, no normalization

o(Wy * Xy + wp; * Hy)
O'(sz * Xt + th * Htfl)
0(Wao * Xt + Wpo * Hy 1)

g, = tanh(wyy x Xy + wyg * Hy_ 1)
Ci=£0C1+i10g

H; = o; ® tanh(C;)

o
([l

o
Il

Configuration-3
scaled tanh activation, no normalization

it = o(wWy x Xy +wp xHy)
f; = o(wyp * Xy +wpyp x Hyq)
O = U(Wza * Xt + Wpo * Htfl)
g; = a X tanh(wyy * Xy + wpg * Hy_1)
C;,=f,0Ci +it®gt
H,; = 0; ® (a X tanh(C;))

Configuration-4
ELU activation, layer normalization before all act.

iy = o(layernorm(wy; * X; + wp; * Hy_1))
f; = o(layernorm(wys * Xy + wpy + Hy_1))
o; = o(layernorm(wy, * X; + Wpo * Hy_1))
g; = ELU(layernorm(wyg * Xy + wpg * Hy_1))
C; = layernorm(f; ® C;-1 +i; © g;)
H, = o, © BLU(C,)

Configuration-5
ELU activation, layer normalization before only ELU act.

ir = o(wy % Xy + wp *x Hyq)
ft = O'(W,If * Xt —+ Why * Ht—l)
01 = 0(Wyo ¥ Xy + Wpo * Hy 1)
g; = ELU(layernorm(wyg * Xy + wpg * H;_1))
C; = layernorm(f; ® C;_1 +i: © g;)
H, = o, ® BLU(C,)

Figure 8: Various activation and normalization options for the
ConvLSTM cell. Configuration-5 delivers the best depth prediction
performance, while maintaining a stable behaviour.

Activation and Normalization in the ConvLSTM Cell.
There are many activation and normalization options that can
be included in a ConvLSTM cell. The options that showed
significant effects are provided in Fig. & and the correspond-
ing depth prediction performances are given in Tab.

tl t2 t3 t4 t5
te 144 tg ty t10

Figure 7: Placing ELU activations without any normalization in the ConvLSTM cell causes stability issues. The noise starting at the lower
left corner of the hidden state (thus the prediction), gets propagated through time and grows with the subsequent convolution operations.

‘ abs ‘ abs-rel ‘ abs-inv ‘ noise test ‘ loop test
Configuration-1 0.1267 | 0.0580 | 0.0344 X X
Configuration-2 0.1321 0.0601 0.0351 v v
Configuration-3 0.1272 | 0.0590 | 0.0351 4 v
Configuration-4 0.1236 | 0.0578 0.0347 v v
Configuration-5 0.1206 | 0.0567 0.0339 v v

Table 6: Evaluation of different activation and normalization
options inside the ConvLSTM cell.

Placing ELU activations enables the range of values to
be similar at the output of the encoder and the output of
the ConvLSTM cell. Whereas, tanh limits the range of the
hidden state to [—1, 1]. During training, we observe that
ELU (Configuration-1) achieves a better learning curve and
provides better validation scores than tanh (Configuration-2).
However, since we validate on short subsequences, similar
to the training subsequences, we can not observe the side
effects of the ELU activation during training. When the
validation is run on long sequences, we observe that naively
placing ELU activations causes two issues. Both of them are
due to the output range [—1, oo] of ELU activation, which is
asymmetric and unbounded on the positive side.

The first issue is that, if the model fails to produce a
“good” hidden state at an arbitrary time, and instead com-
putes a slightly noisy state, the noise gets propagated and
grows incrementally, causing whole predictions to diverge
over time. This issue is depicted in Figure 7. It can occur at
any arbitrary time in a sequence, both with and without the
warping of the hidden state. Randomly introducing positive
additive noise to the hidden state consistently reproduced
this issue and served as a test of robustness for all the ac-
tivation and normalization configurations. We call this the
“noise test”. The second issue is observed while simulating
online multi-view stereo captures with tens of thousands of
frames, done by running the inference on the sequences in

our validation split that include pose loops. We call this the
“loop test”. With ELU activation and no normalization, the
cell state (Cy;) is mostly increasing. In very long sequences,
the values in the states (H;, C;) eventually reach very large
values, which destabilizes the model and the predictions
diverge similar to the first issue.

Scaling the tanh activation function (Configuration-3)
with a learnable «, which the training ends up assign-
ing 4.459, adjusts the numerical range of the hidden state
and results in better depth predictions than unscaled tanh.
However, it can not achieve the accuracy of the unstable
Configuration-1. Whereas, Configuration-4 gives similar
results to Configuration-1, while also passing the stability
test and the loop test. In this configuration, the sparse nature
of ELU activations are kept while the layer normalization
ensures that the cell state always have a zero mean and unit
variance per channel, and the values do not grow uncontrol-
lably. We further improve the performance by removing
the layer normalizations before the sigmoid activations as in
Configuration-5. Placing layer normalizations before the sig-
moid activations dictate that, in i, f, o gate tensors, roughly
half of the values are always below 0.5 and half of them are
above 0.5. This unnecessarily constrains the learning, thus
removing them results in better depth predictions.

ConvLSTM vs. ConvGRU. We compare ConvGRU and
ConvLSTM cells as the recurrent cell choice for our pro-
posed fusion module. ConvLSTM cell logic is given in
Eq. 5 in the paper. By applying the principles learned from
the ablation studies on activation and normalization options,
ConvGRU cell is set up as

W = 0(Wyy * Xy + Wy x Hyq)

ry = U(er * Xyi + Why * Ht—l)

o, = ELU(layernorm(w,, * X; + W, * (Hi—1 @O 1¢)))
H; = layernorm(u; © H;—1 + (1 — uy) ® 0y). (10)

We test the performances of these cells while warping the
hidden states during propagation. Tab. 7 presents the study
results where ConvLSTM outperforms its counterpart by
5.6% in abs-inv error. We speculate that warping the sole
hidden state in ConvGRU hinders the memory functionality.
Since each warping operation removes information from
non-overlapping view frustums of consecutive frames exter-
nally, such info gets lost irrecoverably in the ConvGRU case.
Whereas, with ConvLSTM, we take advantage of the two
internal states and manipulate only the hidden state.

‘ abs ‘ abs-rel ‘ abs-inv
Fusion with ConvLSTM (Eq. 5) and Warping | 0.1192 | 0.0565 0.0340
Fusion with ConvGRU (Eq. 10) and Warping 0.1248 0.0594 0.0359

Table 7: Comparison of ConvLSTM and ConvGRU cell
performances when placed in the proposed fusion module.

Finetuning the Cell. In Tab. 8, B already provides a high
performance, which shows that the model does not require
pixel-perfect warpings while propagating the hidden states.
Nevertheless, finetuning the ConvLSTM cell with the test
time strategy reduces the discrepancy between using the
groundtruth depth and predicted depth, c.f. relative differ-
ences between A, B and C, D. Surprisingly, we also observe
a slight improvement from A to C.

‘ Warp With ‘ abs ‘ abs-rel ‘ abs-inv

Groundtruth | 0.1192 | 0.0565 0.0340
Prediction 0.1207 0.0573 0.0346
Groundtruth | 0.1189 | 0.0563 0.0337
Prediction 0.1191 0.0564 | 0.0338

Before Finetuning (A)
Before Finetuning (B)
After Finetuning (C)
After Finetuning (D)

Table 8: Effect of finetuning the cell while warping the hidden
states with predictions instead of groundtruths.

Skip Connections from Feature Pyramid to Encoder. As
presented, we pass multi-scale image features to the cost
volume encoder by placing several skip connections from
the feature pyramid network. In order to measure the effect
of these connections, we remove the low resolution skip
connections and keep only the half resolution feature map
coming from the feature pyramid, i.e., single-skip design.
As shown in Tab. 9, despite achieving similar results in a
pair network, multi-skip design is around 4.5% better in the
abs-inv metric when placed in a fusion network. We conjec-
ture that we mostly benefit from a secondary effect rather
than the primary motivation of these connections which is to
guide the encoder with strong cues about the image content
at each level. The secondary effect is the established phe-
nomenon that skip connections ease the training and smooth
the loss landscape [30]. Thus, the multi-skip design help
the model reach a better loss minimum in the presence of a
ConvLSTM (which typically complicates the loss landscape)
by providing more “gradient highways”.

‘ abs ‘ abs-rel ‘ abs-inv
Pair Network - Multi-Skip Design 0.1441 | 0.0695 | 0.0427
Pair Network - Single-Skip Design 0.1444 | 0.0692 0.0426

Fusion Network - Multi-Skip Design 0.1192 0.0565 0.0340
Fusion Network - Single-Skip Design 0.1245 0.0589 0.0355

Table 9: Effect of placing multiple skip connections from the
feature pyramid to the cost volume encoder.

Accuracy vs. Time Trade-off of the Fusion. We show
the effectiveness of our proposed fusion in an alternative
way in Tab. 10, where we assume a fixed budget for the
inference time. We re-train the pair network with the number
of sweeping planes M =88 to increase the sweep resolution
while compensating the additional runtime of the fusion. The
increase in the depth resolution improves the pair network’s
performance as expected, but we only see 1.2% improvement
in abs-inv on our ScanNet validation split. The proposed
fusion, with a similar overhead of computational time, results
in 20.4% improvement. This demonstrates the high skew in
the accuracy vs. time trade-off.

‘ abs ‘ abs-rel ‘ abs-inv ‘ time (ms)
Pair Network with M =64 0.1441 0.0695 0.0427 29.72
Pair Network with M =88 0.1429 0.0688 0.0422 37.56

Fusion Network with M=64 | 0.1192 | 0.0565 0.0340 37.14

Table 10: Comparison between increasing the plane sweep
resolution and employing the proposed fusion mechanism.

F. Additional Qualitative Results and
Supplementary Video

In Fig. 9 and Fig. 10, we provide additional example depth
predictions. The same trends we discussed in the main paper
are observed in these examples too. Our pair network can al-
ready output plausible depth predictions, and the proposed fu-
sion module improves the coherency of the depth values for
an image leveraging the past information. This effect is better
observed in the supplementary video, https://ardaduz.
github.io/deep-video-mvs/miscellaneous/deep—
video-mvs-supplementary—-video.mp4, in which we
demonstrate the predicted depth map sequences and the re-
sulting TSDF reconstructions of several indoor scenes. Our
spatio-temporal fusion network produces predictions with
less flickering effects in between time steps, it achieves a
superior geometric consistency than our pair network and
the existing methods. We noticeably output more consis-
tent depth predictions for the planar surfaces throughout a
sequence which gets reflected as smooth reconstructions of
such surfaces.

https://ardaduz.github.io/deep-video-mvs/miscellaneous/deep-video-mvs-supplementary-video.mp4
https://ardaduz.github.io/deep-video-mvs/miscellaneous/deep-video-mvs-supplementary-video.mp4
https://ardaduz.github.io/deep-video-mvs/miscellaneous/deep-video-mvs-supplementary-video.mp4

ydag yinapunol

(uoisng) sinQ

(ired) sino

svii13a

14 - SANdD

14 - 18NWdaaAn

1d4-19Nsda

agody [einsN

Figure 9: Example depth predictions from ScanNet.

| V Y X | -

abew| yida@ yinpunoio (uoisnd) sino (ired) sino svi13aa 14 - SANdS 14 - 19NydaaAn 14 -18NSdd agod [esnaN

Figure 10: Example depth predictions from ScanNet, 7-Scenes and RGB-D Scenes V2.

