
A. Our dataset G-S-H
In our experiments, we showed quantitative evaluations

on multiple benchmarks, including FAUST [1], FAUST
remeshed [8], MANO [10], SURREAL [12] and the
SHREC20 challenge [3]. These five, as well as many
more existing 3D shape datasets, can be roughly classified
in two classes: (i) Synthetic datasets with dense ground-
truth, near-isometries or a compatible meshing and (ii)
real datasets with non-isometric pairs and sparse annotated
ground-truth correspondences1. In many cases, for (i) the
objects are within the same class and therefore have a simi-
lar intrinsic geometry, but they undergo challenging, extrin-
sic deformations with large, non-rigid pose discrepancies.
For (ii), the topological proportions of a pair of objects can
be quite different, but the poses are less challenging than (i).

To address this disconnect between non-isometries and
large non-rigid deformations in existing benchmarks, we
create our own dataset, where the goal is to jointly address
all the challenges mentioned above: Our benchmark has
non-isometric pairs of objects from different classes, large-
scale non-rigid poses and dense annotated ground-truth cor-
respondences for evaluation.

A.1. The dataset

We created objects of 3 different classes for our dataset
with the tool ZBrush: A dog (Galgo), a cat (Sphynx) and
a human. In modeling these shapes, we took great care to
obtain generic but anatomically correct instances of these
distinct species, see Figure 1 for example shapes from all
three classes. We furthermore endowed all objects with a
UV-map parameterization, as well as a wireframe acting as
a deformation cage. Moreover, the range of motions of one
object is specified by a hierarchical set of joints that is con-
sistent for all objects in the dataset. We then animate the
different objects by specifying different configurations in
terms of deformation handles and applying the deformation
to the full shapes with a skinning technique. The UV pa-
rameterizations were defined in a way that they are consis-
tent across all considered classes, as a patchwork of smaller
components/regions of all objects.

A.2. Experiments

We performed a number of experiments on our new
benchmark. For evaluation, we select a number of ∼ 120
uniformly sampled keyframes for training and define 32 dif-
ferent poses as our test set. In the main paper, the match-
ing accuracy for our method, as well as other unsupervised
matching approaches are compared for this setup. Specif-
ically, we followed the same evaluation protocol that we

1Of course not all existing benchmarks fall under one of these two cat-
egories. Some notable exceptions are datasets that specify on a certain
class of objects (like humans) [6, 1] or a specific type of input noise (like
partiality or topological changes) [9, 5]

mentioned earlier in Section 4.1 for the results in Fig. 4,
main paper. Since we have dense ground-truth correspon-
dences that are consistent across all surfaces, we can also
display the mean geodesic error at each individual point of
the objects. Specifically, we take the UV-map parameteri-
zation on one pose of the ‘Galgo’ shape from our dataset
and display the mean matching error of all pairs in the test
set. Furthermore, we show qualitative examples of interpo-
lations obtained with our method in Figure 2.

B. Ablation study
We now provide an ablation study where we examine

how certain parts of our method contribute to our empirical
results. Specifically, we perform the following ablations:

(i) Remove the auxiliary correspondence loss `geo.

(ii) Train for correspondences directly without the inter-
polator module from our architecture (see Fig. 2, main
paper). This means that we only use `geo and ignore
the other two loss components.

(iii) Remove the max-pooling layers in Eq. (4) from our
architecture.

(iv) Replace the EdgeConv layer in Eq. (3) with a standard
PointNet [7] layer.

(v) Replace our feature extractor with KPConv2 [11].

We then report how these changes affect the geodesic er-
ror and the mean conformal distortion (interpolation error)
on FAUST remeshed, corresponding to the results in Table
1 and Figure 6, main paper. Specifically, we compare the
results without post-processing:

Geo. err. Conf. dist

Ours 2.3 0.10
(i) No `geo 13.0 0.13
(ii) No interp. 4.7 –
(iii) No maxpool 2.5 0.14
(iv) EdgeConv 10.6 0.25
(v) Use KPConv 4.2 0.28

Table 1: Ablations.

These experiments indicate that both the interpolator and
the feature extractor are crucial for obtaining high quality
results: Modifying technical details of our feature extrac-
tor leads to suboptimal results (iii)-(v). The difference is
particularly large when EdgeConv is replaced by PointNet

2KPConv is a state-of-the-art architecture for point cloud learning, but
its main emphasis is on tasks like object classification and segmentation.
It was, however, used in a matching pipeline before in prior work [2].



Figure 1: The G-S-H dataset. We show 3 examples each for the 3 classes in our G-S-H dataset. Note, that all 3 classes share
the same parameterization, despite the varying body proportions. In particular this means that we can obtain dense ground
truth correspondences between all pairs of shapes, which we indicate here with a texture map.

Figure 2: Interpolation on G-S-H. Two interpolation sequences on our own benchmark G-S-H obtained with NeuroMorph.
This shows clearly that, while our method contains interesting non-isometric pairs, the non-rigid pose variety is still signifi-
cant.

(iv). Similarly, without the interpolator module, the corre-
spondence estimation is less accurate (ii), since they are not
based on an explicit notion of extrinsic deformation. Fi-
nally, without the geodesic loss `geo, the matching accuracy
deteriorates significantly (i). This can be attributed to the
fact that, without a notion of intrinsic geometry, our method
is prone to run into non-meaningful local minima.

C. Additional qualitative examples
Finally, we show a few more qualitative results from the

SHREC20 benchmark. Specifically, we display examples
of non-isometric interpolations in Figure 3 and a qualitative
comparison of correspondences obtained with our method
and smooth shells [4] in Figure 4.

D. Digital puppeteering

One interesting property of our method is that it is able
to learn geometrically plausible pose priors for any shape
X . Given any target pose Y , we generally obtain a mean-
ingful new pose of the input object X as the last pose of the
interpolation sequence t = 1. Consequently, by considering
a distribution of target poses Y , we automatically obtain a
shape space of admissible poses with the object identity X .
This allows for digital puppeteering as an application of our
method. To that end, we jointly train NeuroMorph for a
set of poses from the TOSCA dataset of animals and hu-
mans, as well as the SURREAL dataset which consists of
a large collection of SMPL shapes. As a proof of concept,



Figure 3: Interpolation on SHREC20. We show two additional examples of interpolation sequences obtained with our
method for pairs of shapes from the SHREC20 [3] dataset. For each input pair, our method acts on the pose of the first
input objects (left) while mostly preserving its identity. The elephant uses its trunk to imitate the shape of the giraffe’s head.
While this can be considered meaningful from a geometric perspective, it also reveals a limitation of our approach. The
fully unsupervised setup occasionally fails to find semantically exact correspondences, if the geometric features have a very
different appearance.

Source Smooth Shells [4] Ours Ours + SL

Figure 4: Unsupervised correspondences on SHREC20. We show two more qualitative comparisons of correspondences
obtained with different methods on the SHREC20 benchmark.
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Figure 5: Digital puppeteering. We train NeuroMorph jointly for a collection of animal and human (SMPL) shapes. In that
manner, we effectively learn a pose prior for the animal shapes which allows us to animate them according to a reference
sequence of SMPL shapes from DFAUST. See also our attached videos for the full, animated versions of the two sequences
shown here.

we then query our network for a time-continuous sequence
of SMPL shapes from the DFAUST dataset and animate the
sequence by replacing the human shape with different ani-
mals, see Figure 5 and also see our attached videos in the
supplementary material.

E. Additional quantitative comparisons

For the sake of completeness, we also provide quanti-
tative comparisons on the SHREC19 [6] benchmark, see
Figure 6. Note that, like for FAUST, we again use the
more recent remeshed version of the dataset, first introduced
in [2].
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Figure 6: Unsupervised correspondences on SHREC19
remeshed. A comparison of unsupervised approaches,
showing the cumulative geodesic error curves on the 430
challenge test pairs.
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